Skip to main content

Advertisement

Log in

Effect of Linolenic acid during in vitro maturation of ovine oocytes: embryonic developmental potential and mRNA abundances of genes involved in apoptosis

  • Gamete Biology
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

To study the effect of α-linolenic acid (ALA) on meiotic maturation, mRNA abundance of apoptosis-related (Bax and Bcl-2) molecules, and blastocyst formation in ovine oocytes.

Methods

A preliminary experiment was conducted to analyze the concentration of ALA in “small” (≤2 mm) and “large” (≥6 mm) follicles using gas chromatography/mass spectrometry analysis. The concentration of ALA in small and large follicles was determined to be in a range of 75.4 to 125.7 μM, respectively. In vitro maturation (IVM) of oocyte was then performed in presence of 0 (control), 10 (ALA-10), 50 (ALA-50), 100 (ALA-100), and 200 (ALA-200) μM of ALA. Meiotic maturation and mRNA abundance of Bax, and Bcl-2 genes was evaluated after 24 h of IVM. The embryonic cleavage and blastocyst formation following parthenogenetic activation were also determined for each group.

Results

The highest concentration of ALA (ALA-200) decreased the oocyte maturation rate compared with the control group. Analysis of apoptosis-related genes in oocytes after IVM revealed lesser transcript abundances for Bax gene, and higher transcript abundances for Bcl-2 gene in ALA-treated oocytes as compared with the control oocytes. In term of cleavage rate (considered as 2-cell progression), we did not observe any differences among the groups. However, ALA-100 group promoted more blastocyst formation as compared with the control group.

Conclusion

Our results suggested that ALA treatment during IVM had a beneficial effect on developmental competence of ovine oocytes by increasing the blastocyst formation and this might be due to the altered abundance of apoptosis-regulatory genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. McKeegan PJ, Sturmey RG. The role of fatty acids in oocyte and early embryo development. Reprod Fertil Dev. 2012;24(1):59–67. doi:10.1071/RD11907.

    Article  Google Scholar 

  2. Leroy JL, Vanholder T, Mateusen B, Christophe A, Opsomer G, de Kruif A, et al. Non-esterified fatty acids in follicular fluid of dairy cows and their effect on developmental capacity of bovine oocytes in vitro. Reproduction. 2005;130(4):485–95. doi:10.1530/rep.1.00735.

    Article  CAS  PubMed  Google Scholar 

  3. Marei WF, Wathes DC, Fouladi-Nashta AA. The effect of linolenic Acid on bovine oocyte maturation and development. Biol Reprod. 2009;81(6):1064–72. doi:10.1095/biolreprod.109.076851.

    Article  CAS  PubMed  Google Scholar 

  4. Marei WF, Wathes DC, Fouladi-Nashta AA. Impact of linoleic acid on bovine oocyte maturation and embryo development. Reproduction. 2010;139(6):979–88. doi:10.1530/REP-09-0503.

    Article  CAS  PubMed  Google Scholar 

  5. Wonnacott KE, Kwong WY, Hughes J, Salter AM, Lea RG, Garnsworthy PC, et al. Dietary omega-3 and −6 polyunsaturated fatty acids affect the composition and development of sheep granulosa cells, oocytes and embryos. Reproduction. 2009;139(1):57–69. doi:10.1530/REP-09-0219.

    Article  Google Scholar 

  6. Bender K, Walsh S, Evans AC, Fair T, Brennan L. Metabolite concentrations in follicular fluid may explain differences in fertility between heifers and lactating cows. Reproduction. 2010;139(6):1047–55. doi:10.1530/REP-10-0068.

    Article  CAS  PubMed  Google Scholar 

  7. Fouladi-Nashta AA, Wonnacott KE, Gutierrez CG, Gong JG, Sinclair KD, Garnsworthy PC, et al. Oocyte quality in lactating dairy cows fed on high levels of n-3 and n-6 fatty acids. Reproduction. 2009;138(5):771–81. doi:10.1530/REP-08-0391.

    Article  CAS  PubMed  Google Scholar 

  8. Childs S, Hennessy AA, Sreenan JM, Wathes DC, Cheng Z, Stanton C, et al. Effect of level of dietary n-3 polyunsaturated fatty acid supplementation on systemic and tissue fatty acid concentrations and on selected reproductive variables in cattle. Theriogenology. 2008;70(4):595–611. doi:10.1016/j.theriogenology.2008.04.002.

    Article  CAS  PubMed  Google Scholar 

  9. Funston RN. Fat supplementation and reproduction in beef females. J Anim Sci. 2004;82(E-Suppl):E154–61.

    PubMed  Google Scholar 

  10. Staples CR, Burke JM, Thatcher WW. Influence of supplemental fats on reproductive tissues and performance of lactating cows. J Dairy Sci. 1998;81(3):856–71. doi:10.3168/jds.S0022-0302(98)75644-9.

    Article  CAS  PubMed  Google Scholar 

  11. Sturmey RG, Reis A, Leese HJ, McEvoy TG. Role of fatty acids in energy provision during oocyte maturation and early embryo development. Reprod Domest Anim. 2009;44 Suppl 3:50–8. doi:10.1111/j.1439-0531.2009.01402.x.

    Article  PubMed  Google Scholar 

  12. Santos JE, Bilby TR, Thatcher WW, Staples CR, Silvestre FT. Long chain fatty acids of diet as factors influencing reproduction in cattle. Reprod Domest Anim. 2008;43 Suppl 2:23–30. doi:10.1111/j.1439-0531.2008.01139.x.

    Article  PubMed  Google Scholar 

  13. Van Hoeck V, Leroy JL, Arias Alvarez M, Rizos D, Gutierrez-Adan A, Schnorbusch K, et al. Oocyte developmental failure in response to elevated nonesterified fatty acid concentrations: mechanistic insights. Reproduction. 2013;145(1):33–44. doi:10.1530/REP-12-0174.

    Article  PubMed  Google Scholar 

  14. Barcelo-Coblijn G, Murphy EJ. Alpha-linolenic acid and its conversion to longer chain n-3 fatty acids: benefits for human health and a role in maintaining tissue n-3 fatty acid levels. Prog Lipid Res. 2009;48(6):355–74. doi:10.1016/j.plipres.2009.07.002.

    Article  CAS  PubMed  Google Scholar 

  15. Ghaffarilaleh V, Fouladi-Nashta A, Paramio MT. Effect of alpha-linolenic acid on oocyte maturation and embryo development of prepubertal sheep oocytes. Theriogenology. 2014;82(5):686–96. doi:10.1016/j.theriogenology.2014.05.027.

    Article  CAS  PubMed  Google Scholar 

  16. O’Fallon JV, Busboom JR, Nelson ML, Gaskins CT. A direct method for fatty acid methyl ester synthesis: application to wet meat tissues, oils, and feedstuffs. J Anim Sci. 2007;85(6):1511–21. doi:10.2527/jas.2006-491.

    Article  PubMed  Google Scholar 

  17. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods. 2001;25(4):402–8. doi:10.1006/meth.2001.1262.

    Article  CAS  PubMed  Google Scholar 

  18. Lan GC, Han D, Wu YG, Han ZB, Ma SF, Liu XY, et al. Effects of duration, concentration, and timing of ionomycin and 6-dimethylaminopurine (6-DMAP) treatment on activation of goat oocytes. Mol Reprod Dev. 2005;71(3):380–8. doi:10.1002/mrd.20267.

    Article  CAS  PubMed  Google Scholar 

  19. Andrade LN, de Lima TM, Curi R, Castrucci AM. Toxicity of fatty acids on murine and human melanoma cell lines. Toxicol In Vitro. 2005;19(4):553–60. doi:10.1016/j.tiv.2005.02.002.

    Article  PubMed  Google Scholar 

  20. Burlacu A. Regulation of apoptosis by Bcl-2 family proteins. J Cell Mol Med. 2003;7(3):249–57.

    Article  CAS  PubMed  Google Scholar 

  21. Ruvolo PP, Deng X, May WS. Phosphorylation of Bcl2 and regulation of apoptosis. Leukemia. 2001;15(4):515–22.

    Article  CAS  PubMed  Google Scholar 

  22. Gross A, McDonnell JM, Korsmeyer SJ. BCL-2 family members and the mitochondria in apoptosis. Genes Dev. 1999;13(15):1899–911.

    Article  CAS  PubMed  Google Scholar 

  23. Marei WF, Wathes DC, Fouladi-Nashta AA. Differential effects of linoleic and alpha-linolenic fatty acids on spatial and temporal mitochondrial distribution and activity in bovine oocytes. Reprod Fertil Dev. 2012;24(5):679–90.

    Article  CAS  PubMed  Google Scholar 

  24. Haberman Y, Alon LT, Eliyahu E, Shalgi R. Receptor for activated C kinase (RACK) and protein kinase C (PKC) in egg activation. Theriogenology. 2011;75(1):80–9.

    Article  CAS  PubMed  Google Scholar 

  25. Al Darwich A, Perreau C, Petit MH, Papillier P, Dupont J, Guillaume D, et al. Effect of PUFA on embryo cryoresistance, gene expression and AMPKalpha phosphorylation in IVF-derived bovine embryos. Prostaglandins Other Lipid Mediat. 2010;93(1–2):30–6. doi:10.1016/j.prostaglandins.2010.06.002.

    Article  CAS  PubMed  Google Scholar 

  26. Cha KY, Chian RC. Maturation in vitro of immature human oocytes for clinical use. Hum Reprod Update. 1998;4(2):103–20.

    Article  CAS  PubMed  Google Scholar 

  27. Elvin JA, Yan C, Matzuk MM. Growth differentiation factor-9 stimulates progesterone synthesis in granulosa cells via a prostaglandin E2/EP2 receptor pathway. Proc Natl Acad Sci U S A. 2000;97(18):10288–93. doi:10.1073/pnas.180295197 180295197.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Stem Cell Technology Research Centre, Tehran, Iran. The authors thank the members of their own laboratories for their helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Akbar Khadem.

Additional information

Capsule α-Linolenic acid in ovine oocyte maturation medium has been found to affect developmental competence, and expression of the Bax, and Bcl-2 genes

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Veshkini, A., Asadi, H., Khadem, A.A. et al. Effect of Linolenic acid during in vitro maturation of ovine oocytes: embryonic developmental potential and mRNA abundances of genes involved in apoptosis. J Assist Reprod Genet 32, 653–659 (2015). https://doi.org/10.1007/s10815-015-0439-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-015-0439-9

Keywords

Navigation