Skip to main content
Log in

Next day determination of ejaculatory sperm motility after overnight shipment of semen to remote locations

  • Gamete Biology
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

To develop a method for delayed assessment of sperm motility, after shipment of semen to a remote laboratory. Sperm in semen were labeled with the MitoTracker® Red CM-H2XRos reagent, and fixed with 3.7 % formaldehyde by the laboratory technicians at the origin of the semen. This treatment reflected well sperm mitochondrial activity, and the MitoTracker® signal was related to sperm motility and velocity for 2–3 days following ejaculation.

Methods

Sperm motility and velocity were evaluated manually and by computer assisted semen analysis (CASA), respectively. Fluorescence assessment of individual sperm was carried out with the computer assisted Metamorph v4.6.9 program. Emission levels of MitoTracker® spermatozoa were studied in room temperature and cooled semen, or in the respective room temperature swim-up sperm fractions following ejaculation, and on the second day (N = 103 samples, 89 men) and third day (N = 10 samples, 8 men).

Results

Sperm with optical density (O.D.) ≥0.7 showed close correlations with ejaculatory sperm motility and velocity even after second day (r = 0.92, p < 0.001, N = 103 samples). Further, the multiple of sperm motility and velocity was also related to the proportion of high MitoTracker® reagent emission sperm (r = 0.83, p < 0.001, N = 103 samples). MitoTracker® dye fluorescence on the second day accurately reflected the ejaculatory sperm motility (r = 0.90, p < 0.001). Thus, a shipping delay would not adversely affect the results.

Conclusions

The delayed assessment of sperm motility in samples treated with MitoTracker® Red CM-H2XRos reagent and shipped to remote laboratory truly reflects the level of sperm motility at the time of the ejaculation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mahadevan MM, Trounson AO. The influence of seminal characteristics on the success rate of human in vitro fertilization. Fertil Steril. 1984;42(3):400–5.

    CAS  PubMed  Google Scholar 

  2. Alper MM, Lee GS, Seibel MM, Smith D, Oskowitz SP, Ransil BJ, et al. The relationship of semen parameters to fertilization in patients participating in a program of in vitro fertilization. J In Vitro Fert Embryo Transf. 1985;2(4):217–23.

    Article  CAS  PubMed  Google Scholar 

  3. Guzick DS, Carson SA, Coutifaris C, Overstreet JW, Factor-Litvak P, Steinkampf MP, et al. Efficacy of superovulation and intrauterine insemination in the treatment of infertility. Nat Coop Reprod Med Net N Engl J Med. 1999;340(3):177–83.

    CAS  Google Scholar 

  4. Zinaman MJ, Brown CC, Selevan SG, Clegg ED. Semen quality and human fertility: a prospective study with healthy couples. J Androl. 2000;21(1):145–53.

    CAS  PubMed  Google Scholar 

  5. Marchetti C, Obert G, Deffosez A, Formstecher P, Marchetti P. Study of mitochondrial membrane potential, reactive oxygen species, DNA fragmentation and cell viability by flow cytometry in human sperm. Hum Reprod. 2002;17(5):1257–65.

    Article  PubMed  Google Scholar 

  6. Aitken RJ, Smith TB, Jobling MS, Baker MA, De Iuliis GN. Oxidative stress and male reproductive health. Asian J Androl. 2014;16(1):31–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Nakada K, Sato A, Yoshida K, Morita T, Tanaka H, Inoue S, et al. Mitochondria-related male infertility. Proc Natl Acad Sci U S A. 2006;103(41):15148–53.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Takasaki N, Tachibana K, Ogasawara S, Matsuzaki H, Hagiuda J, Ishikawa H, et al. A heterozygous mutation of GALNTL5 affects male infertility with impairment of sperm motility. Proc Natl Acad Sci U S A. 2014;111(3):1120–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Esteves SC. A clinical appraisal of the genetic basis in unexplained male infertility. J Hum Reprod Sci. 2013;6(3):176–82.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Schrader SM, Chapin RE, Clegg ED, Davis RO, Fourcroy JL, Katz DF, et al. Laboratory methods for assessing human semen in epidemiologic studies: a consensus report. Reprod Toxicol. 1992;6(3):275–9.

    Article  CAS  PubMed  Google Scholar 

  11. Perreault SD, Aitken RJ, Baker HW, Evenson DP, Huszar G, Irvine DS, et al. Integrating new tests of sperm genetic integrity into semen analysis: breakout group discussion. Adv Exp Med Biol. 2003;518:253–68.

    Article  PubMed  Google Scholar 

  12. Wyrobek AJ, Schrader SM, Perreault SD, Fenster L, Huszar G, Katz DF, et al. Assessment of reproductive disorders and birth defects in communities near hazardous chemical sites. III. guidelines for field studies of male reproductive disorders. Reprod Toxicol. 1997;11(2–3):243–59.

    Article  CAS  PubMed  Google Scholar 

  13. Franken DR, Aneck-Hahn N, Lombaard C, Kruger TF. Semenology training programs: 8 years’ experience. Fertil Steril. 2010;94(7):2615–9.

    Article  PubMed  Google Scholar 

  14. Amann RP, Waberski D. Computer-assisted sperm analysis (CASA): capabilities and potential developments. Theriogenology. 2014;81(1):5–17.

    Article  PubMed  Google Scholar 

  15. Centola GM. Semen assessment. Urol Clin North Am. 2014;41(1):163–7.

    Article  PubMed  Google Scholar 

  16. Lammers J, Splingart C, Barriere P, Jean M, Freour T. Double-blind prospective study comparing two automated sperm analyzers versus manual semen assessment. J Assist Reprod Genet. 2014;31(1):35–43.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Keel BA, Stembridge TW, Pineda G, Serafy Sr NT. Lack of standardization in performance of the semen analysis among laboratories in the United States. Fertil Steril. 2002;78(3):603–8.

    Article  PubMed  Google Scholar 

  18. Bergeron A, Manjunath P. New insights towards understanding the mechanisms of sperm protection by egg yolk and milk. Mol Reprod Dev. 2006;73(10):1338–44.

    Article  CAS  PubMed  Google Scholar 

  19. Aitken RJ, Allan IW, Irvine DS, Macnamee M. Studies on the development of diluents for the transportation and storage of human semen at ambient temperature. Hum Reprod. 1996;11(10):2186–96.

    Article  CAS  PubMed  Google Scholar 

  20. Allan IW, Irvine DS, Macnamee M, Aitken RJ. Field trial of a diluent for the transportation of human semen at ambient temperatures. Fertil Steril. 1997;67(2):348–54.

    Article  CAS  PubMed  Google Scholar 

  21. Shore MD, Macpherson ML, Combes GB, Varner DD, Blanchard TL. Fertility comparison between breeding at 24 h or at 24 and 48 h after collection with cooled equine semen. Theriogenology. 1998;50(5):693–8.

    Article  CAS  PubMed  Google Scholar 

  22. Thun R, Hurtado M, Janett F. Comparison of Biociphos-Plus and TRIS-egg yolk extender for cryopreservation of bull semen. Theriogenology. 2002;57(3):1087–94.

    Article  PubMed  Google Scholar 

  23. Rigby SL, Brinsko SP, Cochran M, Blanchard TL, Love CC, Varner DD. Advances in cooled semen technologies: seminal plasma and semen extender. Anim Reprod Sci. 2001;68(3–4):171–80.

    Article  CAS  PubMed  Google Scholar 

  24. Rota A, Furzi C, Panzani D, Camillo F. Studies on motility and fertility of cooled stallion spermatozoa. Reprod Domest Anim. 2004;39(2):103–9.

    Article  CAS  PubMed  Google Scholar 

  25. Rakha BA, Hussain I, Akhter S, Ullah N, Andrabi SM, Ansari MS. Evaluation of Tris-citric acid, skim milk and sodium citrate extenders for liquid storage of Punjab Urial (Ovis vignei punjabiensis) spermatozoa. Reprod Biol. 2013;13(3):238–42.

    Article  PubMed  Google Scholar 

  26. Ansari MS, Rakha BA, Andrabi SM, Ullah N, Iqbal R, Holt WV, et al. Glutathione-supplemented tris-citric acid extender improves the post-thaw quality and in vivo fertility of buffalo (Bubalus bubalis) bull spermatozoa. Reprod Biol. 2012;12(3):271–6.

    Article  PubMed  Google Scholar 

  27. Bolanos JM, Moran AM, Silva CM, Davila MP, Munoz PM, Aparicio IM, et al. During cooled storage the extender influences processed autophagy marker light chain 3 (LC3B) of stallion spermatozoa. Anim Reprod Sci. 2014;145(1–2):40–6.

    Article  CAS  PubMed  Google Scholar 

  28. Amaral A, Paiva C, Baptista M, Sousa AP, Ramalho-Santos J. Exogenous glucose improves long-standing human sperm motility, viability, and mitochondrial function. Fertil Steril. 2011;96(4):848–50.

    Article  CAS  PubMed  Google Scholar 

  29. Sousa AP, Amaral A, Baptista M, Tavares R, Caballero Campo P, Caballero Peregrin P, et al. Not all sperm are equal: functional mitochondria characterize a subpopulation of human sperm with better fertilization potential. PLoS One. 2011;6(3):e18112.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Marchetti C, Jouy N, Leroy-Martin B, Defossez A, Formstecher P, Marchetti P. Comparison of four fluorochromes for the detection of the inner mitochondrial membrane potential in human spermatozoa and their correlation with sperm motility. Hum Reprod. 2004;19(10):2267–76.

    Article  PubMed  Google Scholar 

  31. Huszar G, Celik-Ozenci C, Cayli S, Kovacs T, Vigue L, Kovanci E. Semen characteristics after overnight shipping: preservation of sperm concentrations, HspA2 ratios, CK activity, cytoplasmic retention, chromatin maturity, DNA integrity, and sperm shape. J Androl. 2004;25(4):593–604.

    PubMed  Google Scholar 

  32. Martenies SE, Perry MJ. Environmental and occupational pesticide exposure and human sperm parameters: a systematic review. Toxicology. 2013;307:66–73.

    Article  CAS  PubMed  Google Scholar 

  33. Amaral A, Lourenco B, Marques M, Ramalho-Santos J. Mitochondria functionality and sperm quality. Reproduction. 2013;146(5):R163–74.

    Article  CAS  PubMed  Google Scholar 

  34. Rajender S, Rahul P, Mahdi AA. Mitochondria, spermatogenesis and male infertility. Mitochondrion. 2010;10(5):419–28.

    Article  CAS  PubMed  Google Scholar 

  35. Paoli D, Gallo M, Rizzo F, Baldi E, Francavilla S, Lenzi A, et al. Mitochondrial membrane potential profile and its correlation with increasing sperm motility. Fertil Steril. 2011;95(7):2315–9.

    Article  CAS  PubMed  Google Scholar 

  36. Ferramosca A, Provenzano SP, Coppola L, Zara V. Mitochondrial respiratory efficiency is positively correlated with human sperm motility. Urology. 2012;79(4):809–14.

    Article  PubMed  Google Scholar 

  37. Troiano L, Granata AR, Cossarizza A, Kalashnikova G, Bianchi R, Pini G, et al. Mitochondrial membrane potential and DNA stainability in human sperm cells: a flow cytometry analysis with implications for male infertility. Exp Cell Res. 1998;241(2):384–93.

    Article  CAS  PubMed  Google Scholar 

  38. Pelliccione F, Micillo A, Cordeschi G, D’Angeli A, Necozione S, Gandini L, et al. Altered ultrastructure of mitochondrial membranes is strongly associated with unexplained asthenozoospermia. Fertil Steril. 2011;95(2):641–6.

    Article  CAS  PubMed  Google Scholar 

  39. Evenson DP, Darzynkiewicz Z, Melamed MR. Simultaneous measurement by flow cytometry of sperm cell viability and mitochondrial membrane potential related to cell motility. J Histochem Cytochem. 1982;30(3):279–80.

    Article  CAS  PubMed  Google Scholar 

  40. Wang X, Sharma RK, Gupta A, George V, Thomas AJ, Falcone T, et al. Alterations in mitochondria membrane potential and oxidative stress in infertile men: a prospective observational study. Fertil Steril. 2003;80 Suppl 2:844–50.

    Article  PubMed  Google Scholar 

  41. Gallon F, Marchetti C, Jouy N, Marchetti P. The functionality of mitochondria differentiates human spermatozoa with high and low fertilizing capability. Fertil Steril. 2006;86(5):1526–30.

    Article  PubMed  Google Scholar 

  42. Riel JM, Yamauchi Y, Huang TT, Grove J, Ward MA. Short-term storage of human spermatozoa in electrolyte-free medium without freezing maintains sperm chromatin integrity better than cryopreservation. Biol Reprod. 2011;85(3):536–47.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Marchetti P, Ballot C, Jouy N, Thomas P, Marchetti C. Influence of mitochondrial membrane potential of spermatozoa on in vitro fertilisation outcome. Andrologia. 2012;44(2):136–41.

    Article  CAS  PubMed  Google Scholar 

  44. Yetunde I, Vasiliki M. Effects of advanced selection methods on sperm quality and ART outcome. Minerva Ginecol. 2013;65(5):487–96.

    CAS  PubMed  Google Scholar 

  45. Huszar G, Jakab A, Sakkas D, Ozenci CC, Cayli S, Delpiano E, et al. Fertility testing and ICSI sperm selection by hyaluronic acid binding: clinical and genetic aspects. Reprod Biomed Online. 2007;14(5):650–63.

    Article  PubMed  Google Scholar 

  46. Cayli S, Jakab A, Ovari L, Delpiano E, Celik-Ozenci C, Sakkas D, et al. Biochemical markers of sperm function: male fertility and sperm selection for ICSI. Reprod Biomed Online. 2003;7(4):462–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Jill Stronk, B.S and Lynne Vigue, M.Sc. for excellent technical assistance. Part of this work was supported by grants from the NIH (HD-19505, OH-04061).

Conflict of interest

MJ is an employee of Thermo Fisher Scientific, the manufacturer of MitoTracker Red. The other listed authors have no financial, commercial or corporate conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leyla Sati.

Additional information

Capsule Next day assessment of ejaculatory sperm motility.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sati, L., Bennett, D., Janes, M. et al. Next day determination of ejaculatory sperm motility after overnight shipment of semen to remote locations. J Assist Reprod Genet 32, 117–125 (2015). https://doi.org/10.1007/s10815-014-0365-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-014-0365-2

Keywords

Navigation