Skip to main content
Log in

Follicular fluid hydrogen peroxide and lipid hydroperoxide in bovine antral follicles of various size, atresia, and dominance status

  • Gonadal Physiology and Disease
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

To avoid inducing a state of oxidative stress (OS), assisted reproductive technologies (ART) must maintain a balance of reactive oxygen species (ROS) and antioxidants during the in vitro culture of oocytes. However, oocyte requirements and tolerance thresholds for ROS during in vivo development are still unclear. Previous studies have examined ROS levels in follicular fluid (FF) using pooled samples or according to follicle size. This study sought to examine two OS markers, lipid hydroperoxides (LPO) and hydrogen peroxide (H2O2), in FF of individually sampled follicles from bovine ovary pairs according to follicle size, atresia, and dominance status.

Methods

TUNEL and cleaved Caspase-3 labeling were used to identify apoptotic granulosa cells and determine follicle atresia status. LPO were measured directly for the first time in FF.

Results

Non-atretic follicles and dominant follicles contained more FF H2O2 than atretic follicles and corresponding subordinate follicles, respectively. FF LPO did not vary in relation to atretic status, and no difference existed between dominant and subordinate follicles. However, FF LPO was significantly lower in first subordinate follicles than in the second subordinate follicles from each ovary pair. Neither H2O2 nor LPO levels correlated with follicle size.

Conclusions

These data provide clear evidence that the events of antral folliculogenesis are relevant to ROS dynamics in vivo. Furthermore, such studies will help to optimize in vitro conditions for oocyte culture protocols, particularly when combined with a comparison of oocyte quality with respect to source follicle characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hennet ML, Combelles CMH. The antral follicle: a microenvironment for oocyte differentiation. Int J Dev Biol. 2013;In Press

  2. Scaramuzzi RJ, Baird DT, Campbell BK, Driancourt MA, Dupont J, Fortune JE, et al. Regulation of folliculogenesis and the determination of ovulation rate in ruminants. Reprod Fertil Dev. 2011;23:444–67.

    Article  PubMed  CAS  Google Scholar 

  3. Nogueira D, Sadeu JC, Montagut J. In vitro oocyte maturation: current status. Semin Reprod Med. 2012;30:199–213.

    Article  PubMed  Google Scholar 

  4. Combelles CM, Gupta S, Agarwal A. Could oxidative stress influence the in-vitro maturation of oocytes? Reprod Biomed Online. 2009;18:864–80.

    Article  PubMed  Google Scholar 

  5. Combelles CMH, Hennet ML. Oxidative stress in assisted reproductive technologies. In: Agarwal A, Rizk B, Aziz N, editors. Studies on women’s health: oxidative stress in applied basic research and clinical practice. New York: Humana Press, Springer Science and Business Media; 2013. p. 205–36.

    Google Scholar 

  6. Dotan Y, Lichtenberg D, Pinchuk I. Lipid peroxidation cannot be used as a universal criterion of oxidative stress. Prog Lipid Res. 2004;43:200–27.

    Article  PubMed  CAS  Google Scholar 

  7. Halliwell B, Chirico S. Lipid peroxidation: its mechanism, measurement, and significance. Am J Clin Nutr. 1993;57:715S–24. discussion 24S–25S.

    PubMed  CAS  Google Scholar 

  8. Jana SK, K NB, Chattopadhyay R, Chakravarty B, Chaudhury K. Upper control limit of reactive oxygen species in follicular fluid beyond which viable embryo formation is not favorable. Reprod Toxicol. 2010;29:447–51.

    Google Scholar 

  9. Das S, Chattopadhyay R, Ghosh S, Ghosh S, Goswami SK, Chakravarty BN, et al. Reactive oxygen species level in follicular fluid–embryo quality marker in IVF? Hum Reprod. 2006;21:2403–7.

    Article  PubMed  CAS  Google Scholar 

  10. Attaran M, Pasqualotto E, Falcone T, Goldberg JM, Miller KF, Agarwal A, et al. The effect of follicular fluid reactive oxygen species on the outcome of in vitro fertilization. Int J Fertil Womens Med. 2000;45:314–20.

    PubMed  CAS  Google Scholar 

  11. Pasqualotto EB, Agarwal A, Sharma RK, Izzo VM, Pinotti JA, Joshi NJ, et al. Effect of oxidative stress in follicular fluid on the outcome of assisted reproductive procedures. Fertil Steril. 2004;81:973–6.

    Article  PubMed  CAS  Google Scholar 

  12. Jozwik M, Wolczynski S, Jozwik M, Szamatowicz M. Oxidative stress markers in preovulatory follicular fluid in humans. Mol Hum Reprod. 1999;5:409–13.

    Article  PubMed  CAS  Google Scholar 

  13. Gupta S, Choi A, Yu HY, Czerniak SM, Holick EA, Paolella LJ, et al. Fluctuations in total antioxidant capacity, catalase activity and hydrogen peroxide levels of follicular fluid during bovine folliculogenesis. Reprod Fertil Dev. 2011;23:673–80.

    Article  PubMed  CAS  Google Scholar 

  14. Basini G, Simona B, Santini SE, Grasselli F. Reactive oxygen species and anti-oxidant defences in swine follicular fluids. Reprod Fertil Dev. 2008;20:269–74.

    Article  PubMed  CAS  Google Scholar 

  15. Aerts JM, Bols PE. Ovarian follicular dynamics. A review with emphasis on the bovine species. Part II: antral development, exogenous influence and future prospects. Reprod Domest Anim. 2010;45:180–7.

    Article  PubMed  CAS  Google Scholar 

  16. Irving-Rodgers HF, Harland ML, Sullivan TR, Rodgers RJ. Studies of granulosa cell maturation in dominant and subordinate bovine follicles: novel extracellular matrix focimatrix is co-ordinately regulated with cholesterol side-chain cleavage CYP11A1. Reproduction. 2009;137:825–34.

    Article  PubMed  CAS  Google Scholar 

  17. Irving-Rodgers HF, Krupa M, Rodgers RJ. Cholesterol side-chain cleavage cytochrome P450 and 3beta-hydroxysteroid dehydrogenase expression and the concentrations of steroid hormones in the follicular fluids of different phenotypes of healthy and atretic bovine ovarian follicles. Biol Reprod. 2003;69:2022–8.

    Article  PubMed  CAS  Google Scholar 

  18. Irving-Rodgers HF, van Wezel IL, Mussard ML, Kinder JE, Rodgers RJ. Atresia revisited: two basic patterns of atresia of bovine antral follicles. Reproduction. 2001;122:761–75.

    Article  PubMed  CAS  Google Scholar 

  19. Shkolnik K, Tadmor A, Ben-Dor S, Nevo N, Galiani D, Dekel N. Reactive oxygen species are indispensable in ovulation. Proc Natl Acad Sci U S A. 2011;108:1462–7.

    Article  PubMed  CAS  Google Scholar 

  20. Miyazaki T, Sueoka K, Dharmarajan AM, Atlas SJ, Bulkley GB, Wallach EE. Effect of inhibition of oxygen free radical on ovulation and progesterone production by the in-vitro perfused rabbit ovary. J Reprod Fertil. 1991;91:207–12.

    Article  PubMed  CAS  Google Scholar 

  21. Hampton MB, Orrenius S. Dual regulation of caspase activity by hydrogen peroxide: implications for apoptosis. FEBS Lett. 1997;414:552–6.

    Article  PubMed  CAS  Google Scholar 

  22. Stridh H, Kimland M, Jones DP, Orrenius S, Hampton MB. Cytochrome c release and caspase activation in hydrogen peroxide- and tributyltin-induced apoptosis. FEBS Lett. 1998;429:351–5.

    Article  PubMed  CAS  Google Scholar 

  23. Mishina NM, Tyurin-Kuzmin PA, Markvicheva KN, Vorotnikov AV, Tkachuk VA, Laketa V, et al. Does cellular hydrogen peroxide diffuse or act locally? Antioxid Redox Signal. 2011;14:1–7.

    Article  PubMed  CAS  Google Scholar 

  24. Bienert GP, Schjoerring JK, Jahn TP. Membrane transport of hydrogen peroxide. Biochim Biophys Acta. 2006;1758:994–1003.

    Article  PubMed  CAS  Google Scholar 

  25. Fortune JE. Ovarian follicular growth and development in mammals. Biol Reprod. 1994;50:225–32.

    Article  PubMed  CAS  Google Scholar 

  26. Combelles CM, Holick EA, Paolella LJ, Walker DC, Wu Q. Profiling of superoxide dismutase isoenzymes in compartments of the developing bovine antral follicles. Reproduction. 2010;139:871–81.

    Article  PubMed  CAS  Google Scholar 

  27. Valdez KE, Cuneo SP, Turzillo AM. Regulation of apoptosis in the atresia of dominant bovine follicles of the first follicular wave following ovulation. Reproduction. 2005;130:71–81.

    Article  PubMed  CAS  Google Scholar 

  28. Kruip TA, Dieleman SJ. Intrinsic and extrinsic factors influencing steroid production in vitro by bovine follicles. Theriogenology. 1989;31:531–44.

    Article  PubMed  CAS  Google Scholar 

  29. Assey RJ, Hyttel P, Greve T, Purwantara B. Oocyte morphology in dominant and subordinate follicles. Mol Reprod Dev. 1994;37:335–44.

    Article  PubMed  CAS  Google Scholar 

  30. Blondin P, Sirard MA. Oocyte and follicular morphology as determining characteristics for developmental competence in bovine oocytes. Mol Reprod Dev. 1995;41:54–62.

    Article  PubMed  CAS  Google Scholar 

  31. Salamone DF, Adams GP, Mapletoft RJ. Changes in the cumulus-oocyte complex of subordinate follicles relative to follicular wave status in cattle. Theriogenology. 1999;52:549–61.

    Article  PubMed  CAS  Google Scholar 

  32. Imai H, Nakagawa Y. Biological significance of phospholipid hydroperoxide glutathione peroxidase (PHGPx, GPx4) in mammalian cells. Free Radic Biol Med. 2003;34:145–69.

    Article  PubMed  CAS  Google Scholar 

  33. Bender K, Walsh S, Evans AC, Fair T, Brennan L. Metabolite concentrations in follicular fluid may explain differences in fertility between heifers and lactating cows. Reproduction. 2010;139:1047–55.

    Article  PubMed  CAS  Google Scholar 

  34. Andersen MM, Kroll J, Byskov AG, Faber M. Protein composition in the fluid of individual bovine follicles. J Reprod Fertil. 1976;48:109–18.

    Article  PubMed  CAS  Google Scholar 

  35. Beg MA, Bergfelt DR, Kot K, Ginther OJ. Follicle selection in cattle: dynamics of follicular fluid factors during development of follicle dominance. Biol Reprod. 2002;66:120–6.

    Article  PubMed  CAS  Google Scholar 

  36. Lund SA, Murdoch J, Van Kirk EA, Murdoch WJ. Mitogenic and antioxidant mechanisms of estradiol action in preovulatory ovine follicles: relevance to luteal function. Biol Reprod. 1999;61:388–92.

    Article  PubMed  CAS  Google Scholar 

  37. Kokoszko A, Dabrowski J, Lewinski A, Karbownik-Lewinska M. Protective effects of GH and IGF-I against iron-induced lipid peroxidation in vivo. Exp Toxicol Pathol. 2008;60:453–8.

    Article  PubMed  CAS  Google Scholar 

  38. Rhee SG. Cell signaling. H2O2, a necessary evil for cell signaling. Science. 2006;312:1882–3.

    Article  PubMed  Google Scholar 

  39. Ushio-Fukai M. Localizing NADPH oxidase-derived ROS. Sci STKE Signal Transduct Knowl Environ. 2006;2006:re8.

    Google Scholar 

  40. Niki E, Yoshida Y, Saito Y, Noguchi N. Lipid peroxidation: mechanisms, inhibition, and biological effects. Biochem Biophys Res Commun. 2005;338:668–76.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Richard Single (Department of Mathematics and Statistics, University of Vermont) and Sallie Sheldon for statistical advice; Jim Larrabee and Roger Sandwick (Department of Chemistry and Biochemistry, Middlebury College) for assistance with technical and chemical adjustments to the lipid peroxidation assay; and Tom Sheluga for laboratory support. This project was supported by Agriculture and Food Research Initiative Competitive Grant no. 2011-67016-20041 from the USDA National Institute of Food and Agriculture.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine M. H. Combelles.

Additional information

Capsule

The follicular fluid milieu of dominant and non-atretic follicles is characterized by elevated levels of hydrogen peroxide, while lipid hydroperoxides don’t vary according to follicle size, atresia, and dominance status.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hennet, M.L., Yu, H.Y. & Combelles, C.M.H. Follicular fluid hydrogen peroxide and lipid hydroperoxide in bovine antral follicles of various size, atresia, and dominance status. J Assist Reprod Genet 30, 333–340 (2013). https://doi.org/10.1007/s10815-012-9925-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-012-9925-5

Keywords

Navigation