Skip to main content
Log in

GSTM1 null genotype contributes to increased risk of male infertility: a meta-analysis

  • Genetics
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Background

Many studies have investigated the association between Glutathione S-Transferase M 1 (GSTM1) null genotype and risk of male infertility, but the impact of GSTM1 null genotype on infertility risk is unclear owing to the obvious inconsistency among those studies. This study aimed to quantify the strength of association between GSTM1 null genotype and risk of male infertility.

Methods

We searched the PubMed, Embase and Wangfang databases for studies investigating the association between GSTM1 null genotype and risk of male infertility. We estimated pooled odds ratio (OR) with its 95 % confidence interval (95 % CI) to assess this possible association.

Results

Twelve case–control studies with 1, 589 infertility cases and 1, 537 controls were included. Meta-analysis of total 12 studies showed that GSTM1 null genotype was associated with increased risk of male infertility (OR = 1.34, 95%CI 1.02–1.77, P = 0.036). In subgroup analysis of Caucasians, there was also an obvious association between GSTM1 null genotype and increased risk of male infertility (OR = 1.51, 95%CI 1.11–2.05, P = 0.006). Sensitivity analyses by sequential omission of individual studies or omitting studies without high quality did not significantly alter the overall pooled OR. Cumulative meta-analysis further showed a trend of more obvious association as information accumulated. No evidence of publication bias was observed.

Conclusion

Meta-analyses of available data suggest that GSTM1 null genotype contributes to increased risk of male infertility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hotaling JM, Walsh TJ. Male infertility: a risk factor for testicular cancer. Nat Rev Urol. 2009;6:550–6.

    Article  PubMed  CAS  Google Scholar 

  2. Chow V, Cheung AP. Male infertility. J Reprod Med. 2006;51:149–56.

    PubMed  Google Scholar 

  3. Hwang K, Walters RC, Lipshultz LI. Contemporary concepts in the evaluation and management of male infertility. Nat Rev Urol. 2011;8:86–94.

    Article  PubMed  CAS  Google Scholar 

  4. Krausz C. Male infertility: pathogenesis and clinical diagnosis. Best Pract Res Clin Endocrinol Metab. 2011;25:271–85.

    Article  PubMed  Google Scholar 

  5. Walsh TJ, Pera RR, Turek PJ. The genetics of male infertility. Semin Reprod Med. 2009;27:124–36.

    Article  PubMed  Google Scholar 

  6. Rajender S, Avery K, Agarwal A. Epigenetics, spermatogenesis and male infertility. Mutat Res. 2011;727:62–71.

    Article  PubMed  CAS  Google Scholar 

  7. Krausz C, Giachini C. Genetic risk factors in male infertility. Arch Androl. 2007;53:125–33.

    Article  PubMed  CAS  Google Scholar 

  8. Hayes JD, Flanagan JU, Jowsey IR. Glutathione transferases. Annu Rev Pharmacol Toxicol. 2005;45:51–88.

    Article  PubMed  CAS  Google Scholar 

  9. Hayes JD, Strange RC. Glutathione S-transferase polymorphisms and their biological consequences. Pharmacology. 2000;61:154–66.

    Article  PubMed  CAS  Google Scholar 

  10. Volk M, Jaklic H, Zorn B, Peterlin B. Association between male infertility and genetic variability at the PON1/2 and GSTM1/T1 gene loci. Reprod Biomed Online. 2011;23:105–10.

    Article  PubMed  CAS  Google Scholar 

  11. Dhillon VS, Shahid M, Husain SA. Associations of MTHFR DNMT3b 4977 bp deletion in mtDNA and GSTM1 deletion, and aberrant CpG island hypermethylation of GSTM1 in non-obstructive infertility in Indian men. Mol Hum Reprod. 2007;13:213–22.

    Article  PubMed  CAS  Google Scholar 

  12. Safarinejad MR, Shafiei N, Safarinejad S. The association of glutathione-S-transferase gene polymorphisms (GSTM1, GSTT1, GSTP1) with idiopathic male infertility. J Hum Genet. 2010;55:565–70.

    Article  PubMed  CAS  Google Scholar 

  13. Polonikov AV, Yarosh SL, Kokhtenko EV, Starodubova NI, Pakhomov SP, Orlova VS. The functional genotype of glutathione S-transferase T1 gene is strongly associated with increased risk of idiopathic infertility in Russian men. Fertil Steril. 2010;94:1144–7.

    Article  PubMed  CAS  Google Scholar 

  14. Aydos SE, Taspinar M, Sunguroglu A, Aydos K. Association of CYP1A1 and glutathione S-transferase polymorphisms with male factor infertility. Fertil Steril. 2009;92:541–7.

    Article  PubMed  CAS  Google Scholar 

  15. Attia J, Thakkinstian A, D’Este C. Meta-analyses of molecular association studies: methodologic lessons for genetic epidemiology. J Clin Epidemiol. 2003;56:297–303.

    Article  PubMed  Google Scholar 

  16. Petitti DB. Meta-analysis, decision analysis, and cost effectiveness analysis: methods for quantitative synthesis in medicine. 2nd ed. New York, NY: Oxford University Press; 2000.

    Google Scholar 

  17. Sotiriadis A, Makrigiannakis A, Stefos T, Paraskevaidis E, Kalantaridou SN. Fibrinolytic defects and recurrent miscarriage: a systematic review and meta-analysis. Obstet Gynecol. 2007;109:1146–55.

    Article  PubMed  Google Scholar 

  18. Su MT, Lin SH, Chen YC. Genetic association studies of angiogenesis- and vasoconstriction-related genes in women with recurrent pregnancy loss: a systematic review and meta-analysis. Hum Reprod Update. 2011;17:803–12.

    Article  PubMed  CAS  Google Scholar 

  19. Su MT, Lin SH, Chen YC. Association of sex hormone receptor gene polymorphisms with recurrent pregnancy loss: a systematic review and meta-analysis. Fertil Steril. 2011;96:1435 e1–44 e1.

    Article  Google Scholar 

  20. Mantel N, Haenszel W. Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst. 1959;22:719–48.

    PubMed  CAS  Google Scholar 

  21. DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7:177–88.

    Article  PubMed  CAS  Google Scholar 

  22. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327:557–60.

    Article  PubMed  Google Scholar 

  23. Cochran WG. The combination of estimates from different experiments. Biometrics. 1954;10:101–29.

    Article  Google Scholar 

  24. Thompson SG, Higgins J. How should meta–regression analyses be undertaken and interpreted? Statistics in medicine. 2002;21:1559–73.

    Article  PubMed  Google Scholar 

  25. Lau J, Antman EM, Jimenez-Silva J, Kupelnick B, Mosteller F, Chalmers TC. Cumulative meta-analysis of therapeutic trials for myocardial infarction. N Engl J Med. 1992;327:248–54.

    Article  PubMed  CAS  Google Scholar 

  26. Muellerleile P, Mullen B. Sufficiency and stability of evidence for public health interventions using cumulative meta-analysis. Am J Public Health. 2006;96:515–22.

    Article  PubMed  Google Scholar 

  27. Tobias A. Assessing the influence of a single study in the meta-analysis estimate. Stata Tech Bull. 1999;8:15–7.

    Google Scholar 

  28. Bhopal R. Glossary of terms relating to ethnicity and race: for reflection and debate. J Epidemiol Community Health. 2004;58:441–5.

    Article  PubMed  CAS  Google Scholar 

  29. Coon CS. The races of Europe: Greenwood Press, 1972.

  30. Stuck AE, Rubenstein LZ, Wieland D. Bias in meta-analysis detected by a simple, graphical test. Asymmetry detected in funnel plot was probably due to true heterogeneity. BMJ. 1998;316:469. author reply 70–1.

    Article  PubMed  CAS  Google Scholar 

  31. Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315:629–34.

    Article  PubMed  CAS  Google Scholar 

  32. Salehi Z, Gholizadeh L, Vaziri H, Madani AH. Analysis of GSTM1, GSTT1, and CYP1A1 in idiopathic male infertility. Reprod Sci. 2012;19:81–5.

    Article  PubMed  CAS  Google Scholar 

  33. Jaiswal D, Sah R, Agrawal NK, Dwivedi US, Trivedi S, Singh K. Combined effect of GSTT1 and GSTM1 polymorphisms on human male infertility in North Indian population. Reprod Sci. 2012;19:312–6.

    Article  PubMed  CAS  Google Scholar 

  34. Finotti AC, Costa ESRC, Bordin BM, Silva CT, Moura KK. Glutathione S-transferase M1 and T1 polymorphism in men with idiopathic infertility. Genet Mol Res. 2009;8:1093–8.

    Article  PubMed  CAS  Google Scholar 

  35. Paracchini V, Garte S, Taioli E. MTHFR C677T polymorphism, GSTM1 deletion and male infertility: a possible suggestion of a gene-gene interaction? Biomarkers. 2006;11:53–60.

    Article  PubMed  CAS  Google Scholar 

  36. Ichioka K, Nagahama K, Okubo K, Soda T, Ogawa O, Nishiyama H. Genetic polymorphisms in glutathione S-transferase T1 affect the surgical outcome of varicocelectomies in infertile patients. Asian J Androl. 2009;11:333–41.

    Article  PubMed  CAS  Google Scholar 

  37. Aydemir B, Onaran I, Kiziler AR, Alici B, Akyolcu MC. Increased oxidative damage of sperm and seminal plasma in men with idiopathic infertility is higher in patients with glutathione S-transferase Mu-1 null genotype. Asian J Androl. 2007;9:108–15.

    Article  PubMed  CAS  Google Scholar 

  38. Tirumala Vani G, Mukesh N, Siva Prasad B, et al. Role of glutathione S-transferase Mu-1 (GSTM1) polymorphism in oligospermic infertile males. Andrologia. 2010;42:213–7.

    Article  PubMed  CAS  Google Scholar 

  39. Lee IW, Kuo PH, Su MT, Kuan LC, Hsu CC, Kuo PL. Quantitative trait analysis suggests polymorphisms of estrogen-related genes regulate human sperm concentrations and motility. Hum Reprod. 2011;26:1585–96.

    Article  PubMed  CAS  Google Scholar 

  40. Chen SS, Chang LS, Chen HW, Wei YH. Polymorphisms of glutathione S-transferase M1 and male infertility in Taiwanese patients with varicocele. Hum Reprod. 2002;17:718–25.

    Article  PubMed  CAS  Google Scholar 

  41. Onaran I, Aydemir B, Kiziler AR, Demiryurek T, Alici B. Relationships between levels of estradiol and testosterone in seminal plasma and GSTM1 polymorphism in infertile men. Arch Androl. 2007;53:13–6.

    Article  PubMed  CAS  Google Scholar 

  42. Ioannidis JP, Patsopoulos NA, Evangelou E. Uncertainty in heterogeneity estimates in meta-analyses. BMJ. 2007;335:914–6.

    Article  PubMed  Google Scholar 

  43. Aitken RJ, Krausz C. Oxidative stress, DNA damage and the Y chromosome. Reproduction. 2001;122:497–506.

    Article  PubMed  CAS  Google Scholar 

  44. Gharagozloo P, Aitken RJ. The role of sperm oxidative stress in male infertility and the significance of oral antioxidant therapy. Hum Reprod. 2011;26:1628–40.

    Article  PubMed  Google Scholar 

  45. Raijmakers MT, Roelofs HM, Steegers EA, et al. Glutathione and glutathione S-transferases A1-1 and P1-1 in seminal plasma may play a role in protecting against oxidative damage to spermatozoa. Fertil Steril. 2003;79:169–72.

    Article  PubMed  Google Scholar 

  46. Simmonds MC, Higgins JP, Stewart LA, Tierney JF, Clarke MJ, Thompson SG. Meta-analysis of individual patient data from randomized trials: a review of methods used in practice. Clin Trials. 2005;2:209–17.

    Article  PubMed  Google Scholar 

  47. O’Flynn O’Brien KL, Varghese AC, Agarwal A. The genetic causes of male factor infertility: a review. Fertil Steril. 2010;93:1–12.

    Article  PubMed  Google Scholar 

  48. Stouffs K, Lissens W, Tournaye H, Haentjens P. What about gr/gr deletions and male infertility? Systematic review and meta-analysis. Hum Reprod Update. 2011;17:197–209.

    Article  PubMed  CAS  Google Scholar 

  49. Davis-Dao CA, Tuazon ED, Sokol RZ, Cortessis VK. Male infertility and variation in CAG repeat length in the androgen receptor gene: a meta-analysis. J Clin Endocrinol Metab. 2007;92:4319–26.

    Article  PubMed  CAS  Google Scholar 

  50. Wu W, Shen O, Qin Y, et al. Methylenetetrahydrofolate reductase C677T polymorphism and the risk of male infertility: a meta-analysis. Int J Androl. 2012;35:18–24.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Hua Zhang, Meizhou People’s hospital, China, for her statistical support.

Funding

No external funding was either sought or obtained for this study.

Conflict of interests

None of the authors have any conflict of interests to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Liping.

Additional information

Capsule GSTM1 null genotype contributes to increased risk of male infertility.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chengyong, W., Man, Y., Mei, L. et al. GSTM1 null genotype contributes to increased risk of male infertility: a meta-analysis. J Assist Reprod Genet 29, 837–845 (2012). https://doi.org/10.1007/s10815-012-9790-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-012-9790-2

Keywords

Navigation