Skip to main content

Advertisement

Log in

The time interval between hCG priming and oocyte retrieval in ART program: a meta-analysis

  • ASSISTED REPRODUCTION TECHNOLOGIES
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Objective

To evaluate the relationship between different hCG priming-to-oocyte retrieval intervals and assisted reproductive technology (ART) outcome.

Methods

We systematically searched PubMed, EMBASE, the Cochrane Library, Science Citation Index, Chinese biomedicine (CBM) literature database, and Chinese Journal Full-text Database for randomized controlled trials (RCTs) published up to November 2010. Data was extracted from the studies by two independent reviewers. Statistical analysis was performed with Cochrane Collaboration’s Review Manager (RevMan) 5.0.2. From extracted data, Risk Ratio (RR) with 95% confidence interval (CI) was calculated.

Results

5 RCTs totaling 895 participants were included. Oocyte maturation rate was higher in the long interval group compared with short interval group (RR, 0.67; 95% CI, 0.62–0.73). There were no significant difference between the two groups with regard to fertilization rate (RR, 0.99; 95% CI, 0.94–1.04), implantation rate (RR, 0.91; 95% CI, 0.40–2.04), and pregnancy rate (RR, 0.79; 95% CI, 0.58–1.08).

Conclusion

The percentage of mature (MII) oocytes can be increased by prolonging the interval between hCG priming and oocyte retrieval. The prolonged interval could not increase the fertilization rate, implantation rate, and pregnancy rate. Although there was evidence to confirm the results, they still need to be confirmed by large-sample, multicenter, randomized controlled trials. The time interval dependent mechanisms responsible for ART performance need to be elucidated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ART:

Assisted reproductive technology

ATP:

Adenosine triphosphate

CC:

Clomiphene citrate

COH:

Controlled ovarian hyperstimulation

ET:

Embryo transfer

FSH:

Follicle-stimulating hormone

GnRH-a:

Gonadotropic hormone releasing hormone analogue

hCG:

Human chorionic gonadotropin

hMG:

Human menopausal gonadotropin

ICSI:

Intracytoplasmic sperm injection

IGF:

Insulin-like growth factor

IL:

Interleukin

IM:

Intramuscular injection

IUI:

Intrauterine insemination

IVF:

In vitro fertilization

IVM:

In vitro maturation

LH:

Luteinizing hormone

LI:

Long interval

MII:

Metaphase II

NA:

Not available

RCT:

Randomized controlled trial

RevMan:

Review Manager

RR:

Risk ratio

SI:

Short interval

TUS:

Transvaginal ultrasound

VEGF:

Vascular endothelial growth factor

2PN:

Two-pronuclear

95% CI:

95% confidence interval

References

  1. Griesinger G, Kolibianakis EM, Papanikolaou EG, Diedrich K, Van Steirteghem A, Devroey P, et al. Triggering of final oocyte maturation with gonadotropin-releasing hormone agonist or human chorionic gonadotropin. Live birth after frozen-thawed embryo replacement cycles. Fertil Steril. 2007;88:616–21.

    Article  PubMed  CAS  Google Scholar 

  2. Gudmundsson J, Fleming R, Jamieson ME, McQueen D, Coutts JRT. Luteinization to oocyte retrieval delay in women in whom multiple follicular growth was induced as part of an in vitro fertilization/gamete intrafallopian transfer program. Fertil Steril. 1990;53:735–7.

    PubMed  CAS  Google Scholar 

  3. Kuo TC, Endo K, Dharmarajan AM, Miyazaki T, Atlas SJ, Wallach EE. Direct effect of angiotensin II on in-vitro perfused rabbit ovary. J Reprod Fertil. 1991;92:469–74.

    Article  PubMed  CAS  Google Scholar 

  4. Artini PG, Fasciani A, Monti M, Luisi S, D’Ambrogio G, Genazzani AR. Changes in vascular endothelial growth factor levels and the risk of ovarian hyperstimulation syndrome in women enrolled in an in vitro fertilization program. Fertil Steril. 1998;70:560–4.

    Article  PubMed  CAS  Google Scholar 

  5. Bokal EV, Vrtovec HM, Virant Klun I, Verdenik I. Prolonged HCG action affects angiogenic substances and improves follicular maturation, oocyte quality and fertilization competence in patients with polycystic ovarian syndrome. Hum Reprod. 2005;20:1562–8.

    Article  PubMed  CAS  Google Scholar 

  6. Artini PG, Monti M, Fasciani A, Battaglia C, D’Ambrogio G, Genazzani AR. Vascular endothelial growth factor, interleukin-6 and interleukin-2 in serum and follicular fluid of patients with ovarian hyperstimulation syndrome. Eur J Obstet Gynecol Reprod Biol. 2002;101:169–74.

    Article  PubMed  CAS  Google Scholar 

  7. World Health Organization. Temporal relationships between ovulation and defined changes in the concentration of plasma oE2–17β, luteinizing hormone, follicle stimulating hormone and progesterone. Am J Obstet Gynecol. 1980;138:383–90.

    Google Scholar 

  8. Nader S, Berkowitz AS. Study of the pharmacokinetics of human chorionic gonadotropin and its relation to ovulation. In Vitro Fert Embryo Transfer. 1990;7:114–8.

    Article  CAS  Google Scholar 

  9. Edwards RG, Steptoe PC. Induction of follicular growth, ovulation and luteinization in the human ovary. J Reprod Fertil. 1975;22(Suppl):121–63.

    CAS  Google Scholar 

  10. Testart J, Frydman R. Minimum time lapse between luteinizing hormone surge or human chorionic gonadotropin administration and follicular rupture. Fertil Steril. 1982;37:50–3.

    PubMed  CAS  Google Scholar 

  11. Trounson AO, Leeton JF, Wood C. In vitro fertilization and embryo transfer in the human. In: Rolland R, van Hall EV, Hillier SG, Mcnatty KP, Schoemaker J, editors. Follicular maturation and ovulation. Amsterdam, Exerpta Medica 1982:313

  12. De Vits A, Gerris J, Joostens M, Aytos A. Comparison between two hCG-to-oocyte aspiration intervals (36 versus 38) on the outcome of in-vitro fertilization. Hum Reprod. 1994;9(Suppl):12–5.

    Google Scholar 

  13. Mansour RT, Aboulghar MA, Serour GI. Study of the optimum time for human chorionic gonadotropin-ovum pickup interval in in vitro fertilization. J Assist Reprod Genet. 1994;11:478–81.

    Article  PubMed  CAS  Google Scholar 

  14. Fleming R, Coutts JRT. Induction of multiple follicular development for IVF. Brit Med Bull. 1990;46:596–615.

    PubMed  CAS  Google Scholar 

  15. Al-Mizyen ES, Balet R, Lower AM, Wilson C, McClure AF, Al Shawaf T, et al. Unexpected successful fertilization in vitro of oocytes retrieved 60 hours after human chorionic gonadotrophin injection. Hum Reprod. 1998;13:1020–1.

    Article  PubMed  CAS  Google Scholar 

  16. Nargund G, Reid F, Parsons J. Human chorionic gonadotropin-to-oocyte collection interval in a superovulation IVF program. A prospective study. J Assist Reprod Genet. 2001;18:87–90.

    Article  PubMed  CAS  Google Scholar 

  17. Bjercke S, Tanbo T, Dale PO, Abyholm T. Comparison between two hCG-to-oocyte aspiration intervals on the outcome of in vitro fertilization. J Assist Reprod Genet. 2000;17:319–22.

    Article  PubMed  CAS  Google Scholar 

  18. Higgins J, Green S, editors. Cochrane handbook for systematic reviews of interventions 5.0.0 [updated February 2008]. In: The Cochrane collaboration. Wiley 2008.

  19. Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21:1539–58.

    Article  PubMed  Google Scholar 

  20. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ. 2009;339:b2535.

    Article  PubMed  Google Scholar 

  21. Claman P, Wilkie V, Collins D. A short (335 h) compared with a long (395 h) interval between HCG injection and intrauterine insemination after superovulation therapy. Hum Reprod. 2000;15:6–7.

    Google Scholar 

  22. Claman P, Wilkie V, Collins D. Timing intrauterine insemination either 33 or 39 hours after administration of human chorionic gonadotropin yields the same pregnancy rates as after superovulation therapy. Fertil Steril. 2004;82:13–6.

    Article  PubMed  CAS  Google Scholar 

  23. Fischer RA, Nakajima ST, Gibson M, Brumsted JR. Ovulation after intravenous and intramuscular human chorionic gonadotropin. Fertil Steril. 1993;60:418–22.

    PubMed  CAS  Google Scholar 

  24. Howles CM, Macnamee MC, Edwards RG. Progesterone supplementation in the late follicular phase of an in-vitro fertilization cycle: a ‘natural’ way to time oocyte recovery? Hum Reprod. 1988;3:409–12.

    PubMed  CAS  Google Scholar 

  25. Laufer N, DeCherney AH, Tarlatzis BC, Zuckerman AL, Polan ML, Dlugi AM, et al. Delaying human chorionic gonadotropin administration in human menopausal gonadotropin-induced cycles decreases successful in vitro fertilization of human oocytes. Fertil Steril. 1984;42:198–203.

    PubMed  CAS  Google Scholar 

  26. Templeton AA, Van Look P, Angell RE, et al. Oocyte recovery and fertilization rates in women at various times after the administration of hCG. J Reprod Fertil. 1986;76:771–8.

    Article  PubMed  CAS  Google Scholar 

  27. Schachter M, Friedler S, Ron-El R, Zimmerman AL, Strassburger D, Bern O, et al. Can pregnancy rate be improved in gonadotropin-releasing hormone (GnRH) antagonist cycles by administering GnRH agonist before oocyte retrieval? A prospective, randomized study. Fertil Steril. 2008;90:1087–93.

    Article  PubMed  CAS  Google Scholar 

  28. Raziel A, Schachter M, Strassburger D, Kasterstein E, Ron-El R, Friedler S. In vivo maturation of oocytes by extending the interval between human chorionic gonadotropin administration and oocyte retrieval. Fertil Steril. 2006;86:583–7.

    Article  PubMed  CAS  Google Scholar 

  29. Jamieson ME, Fleming R, Kader S, Ross KS, Yates RW, Coutts JR. In vivo and in vitro maturation of human oocytes: effects on embryo development and polyspermic fertilization. Fertil Steril. 1991;56:93–7.

    PubMed  CAS  Google Scholar 

  30. Schmidt DW, Maier DB, Nulsen JC, Benadiva CA. Reducing the dose of human chorionic gonadotropin in high responders does not affect the outcomes of in vitro fertilization. Fertil Steril. 2004;82:841–6.

    Article  PubMed  CAS  Google Scholar 

  31. Isik AZ, Vicdan K. Combined approach as an effective method in the prevention of severe ovarian hyperstimulation syndrome. Eur J Obstet Gynecol Reprod Biol. 2001;97:208–12.

    Article  PubMed  CAS  Google Scholar 

  32. Jagiello G, Karniki J, Ryan R. Superovulaton with pituitary gonadotropin methods for obtaining meiotic metaphase figures in human ova. Lancet. 1968;1:178–80.

    Article  Google Scholar 

  33. Van Steirteghem AC, Liu J, Joris H, Nagy Z, Janssenswillen C, Tournaye H, et al. Higher success rate by intracytoplasmic sperm injection than by subzonal insemination. Report of a second series of 300 consecutive treatment cycles. Hum Reprod. 1993;8:1055–60.

    PubMed  Google Scholar 

  34. Steptoe PC, Edwards RG. Laparoscopic recovery of preovulatory human oocytes after priming of ovaries with gonadotrophins. Lancet. 1970;1:683–9.

    Article  PubMed  CAS  Google Scholar 

  35. Edwards RG, Steptoe PC. Control of human ovulation, fertilization and implantation. Proc R Soc Med. 1974;67:932–6.

    PubMed  CAS  Google Scholar 

  36. Andersen AG, Als-Nielsen B, Hornnes PJ, Franch Andersen L. Time interval from human chorionic gonadotrophin (HCG) injection to follicular rupture. Hum Reprod. 1995;10:3202–5.

    PubMed  CAS  Google Scholar 

  37. Trounson A, Wood C, Kausche A. In vitro maturation and the fertilization and developmental competence of oocytes recovered from untreated polycystic ovarian patients. Fertil Steril. 1994;62:353–62.

    PubMed  CAS  Google Scholar 

  38. Son WY, Chung JT, Chian RC, Herrero B, Demirtas E, Elizur S, et al. A 38 h interval between hCG priming and oocyte retrieval increases in vivo and in vitro oocyte maturation rate in programmed IVM cycles. Hum Reprod. 2008;23:2010–6.

    Article  PubMed  CAS  Google Scholar 

  39. Hull MG, Fleming CF, Hughes AO, McDermott A. The age-related decline in female fecundity: a quantitative controlled study of implanting capacity and survival of individual embryos after in vitro fertilization. Fertil Steril. 1996;65:783–90.

    PubMed  CAS  Google Scholar 

  40. Schnorr JA, Doviak MJ, Muasher SJ, Jones Jr HW. Impact of a cryopreservation program on the multiple pregnancy rate associated with assisted reproductive technologies. Fertil Steril. 2001;75:147–51.

    Article  PubMed  CAS  Google Scholar 

  41. Thurin A, Hausken J, Hillensjo T, Jablonowska B, Pinborg A, Strandell A, et al. Elective single-embryo transfer versus double-embryo transfer in in vitro fertilization. N Engl J Med. 2004;351:2392–402.

    Article  PubMed  CAS  Google Scholar 

  42. Lukassen HGM, Braat DD, Wetzels AMM, Zielhuis GA, Adang EMM, Scheenjes E, et al. Two cycles with single embryo transfer versus one cycle with double embryo transfer: a randomized controlled trial. Hum Reprod. 2005;20:702–8.

    Article  PubMed  CAS  Google Scholar 

  43. Veleva Z, Vilska S, Hyden-Granskog C, Tiitinen A, Tapanainen JS, Martikainen H. Elective single embryo transfer in women aged 36–39 years. Hum Reprod. 2006;21:2098–102.

    Article  PubMed  Google Scholar 

  44. Van Royen E, Mangelschots K, De Neubourg D, Valkenburg M, Van de Meerssche M, Ryckaert G, et al. Characterization of a top quality embryo, a step towards single-embryo transfer. Hum Reprod. 1999;14:2345–9.

    Article  PubMed  Google Scholar 

  45. Roux C, Joanne C, Agnani G, Fromm M, Clavequin MC, Bresson JL. Morphometric parameters of living human in-vitro fertilization embryos; importance of the asynchronous division process. Hum Reprod. 1995;10:1201–7.

    PubMed  CAS  Google Scholar 

  46. Hiiragi T, Solter D. Mechanism of first cleavage specification in the mouse egg: is our body plan set at day 0? Cell Cycle. 2005;4:661–4.

    Article  PubMed  CAS  Google Scholar 

  47. Gardner RL, Davies TJ. An investigation of the origin and significance of bilateral symmetry of the pronuclear zygote in the mouse. Hum Reprod. 2006;21:492–502.

    Article  PubMed  CAS  Google Scholar 

  48. Racowsky C, Jackson KV, Cekleniak NA, Fox JH, Hornstein MD, Ginsburg ES. The number of eight-cell embryos is a key determinant for selecting day 3 or day 5 transfer. Fertil Steril. 2000;73:558–64.

    Article  PubMed  CAS  Google Scholar 

  49. Scott L, Finn A, O’Leary T, McLellan S, Hill J. Morphologic parameters of early cleavage-stage embryos that correlate with fetal development and delivery: prospective and applied data for increased pregnancy rates. Hum Reprod. 2007;22:230–40.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Jin-Hui Tian, Bin Ma, Lei Jiang, Wen-Qin Jia, Kang Yi, and Lun Li (Evidence-Based Medicine Center of Lanzhou University, Lanzhou, China) for advice on conducting the meta-analysis and writing the article.

Conflicts of interest statement

The authors declared no conflicts of interest related to this study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xue-Hong Zhang or Wei-Hua Wang.

Additional information

Capsule In ART treatment cycles, the chances to achieve a pregnancy are critically dependent on the retrieval of a suitable number of high quality oocytes and embryos. Angiotensin II, vascular endothelial growth factor (VEGF), interleukin I (IL-1), IL-6, IL-8, angiopoietin, insulin-like growth factor (IGF), basic fibroblast growth factor (bFGF), and endothelin levels appear able to identify women candidate for an ART treatment from whom a suitable number of high quality oocytes may be retrieved.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, W., Zhang, XH., Wang, WH. et al. The time interval between hCG priming and oocyte retrieval in ART program: a meta-analysis. J Assist Reprod Genet 28, 901–910 (2011). https://doi.org/10.1007/s10815-011-9613-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-011-9613-x

Keywords

Navigation