Skip to main content
Log in

Effect of leukocytospermia and processing by discontinuous density gradient on sperm nuclear DNA fragmentation and mitochondrial activity

  • ANDROLOGY
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

To assess the effect of leukocytospermia and semen processing on sperm DNA and mitochondria.

Methods

Twenty-two patients with and 41 without leukocytospermia were included. Sperm DNA fragmentation was assessed by the Comet assay, and mitochondrial activity by a colorimetric method for active mitochondria. Semen was processed using Percoll, and motility, DNA fragmentation, and mitochondrial activity were analyzed pre- and post-processing.

Results

No differences were observed in age, abstinence, volume, sperm morphology, progressive motility, concentration, and vitality (p > 0.10). Variables were grouped according to time (pre- vs post-processing) and group (leukocytospermia vs non-leukocytospermia) because no interactions could be observed. Leukocytospermia was associated to increased DNA fragmentation, while semen processing led to a decrease in DNA fragmentation and to increased mitochondrial activity.

Conclusion

While semen processing selects sperm with higher rates of DNA integrity independent of the presence or absence of leukocytes in semen, samples without leukocytospermia present more sperm without DNA fragmentation. Semen processing also selects sperm with higher mitochondrial activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. World Health Organization. Laboratory manual for the examination of human semen and sperm-cervical mucus interaction. 4th ed. New York: Cambridge University Press; 1999.

    Google Scholar 

  2. Aitken RJ, Clarkson JS. Cellular basis of defective sperm function and its association with the genesis of reactive oxygen species by human spermatozoa. J Reprod Fertil. 1987;81(2):459–69. doi:10.1530/jrf.0.0810459.

    Article  PubMed  CAS  Google Scholar 

  3. Wolff H. The biologic significance of white blood cells in semen. Fertil Steril. 1995;63(6):1143–57.

    PubMed  CAS  Google Scholar 

  4. Alvarez JG, Touchstone JC, Blasco L, Storey BT. Spontaneous lipid peroxidation and production of hydrogen peroxide and superoxide in human spermatozoa. Superoxide dismutase as major enzyme protectant against oxygen toxicity. J Androl. 1987;8(5):338–48.

    PubMed  CAS  Google Scholar 

  5. Iwasaki A, Gagnon C. Formation of reactive oxygen species in spermatozoa of infertile patients. Fertil Steril. 1992;57(2):409–16.

    PubMed  CAS  Google Scholar 

  6. Comhaire FH, Mahmoud AM, Depuydt CE, Zalata AA, Christophe AB. Mechanisms and effects of male genital tract infection on sperm quality and fertilizing potential: the andrologist’s viewpoint. Hum Reprod Update. 1999;5(5):393–8. Review. doi:10.1093/humupd/5.5.393.

    Article  PubMed  CAS  Google Scholar 

  7. de Lamirande E, Gagnon C. A positive role for the superoxide anion in triggering hyperactivation and capacitation of human spermatozoa. Int J Androl. 1993;16(1):21–5. doi:10.1111/j.1365-2605.1993.tb01148.x.

    Article  PubMed  Google Scholar 

  8. de Lamirande E, Gagnon C. Capacitation-associated production of superoxide anion by human spermatozoa. Free Radic Biol Med. 1995;18(3):487–95. doi:10.1016/0891-5849(94)00169-K.

    Article  PubMed  Google Scholar 

  9. Aitken J, Fisher H. Reactive oxygen species generation and human spermatozoa: the balance of benefit and risk. Bioessays 1994;16(4):259–67. Review. doi:10.1002/bies.950160409.

    Article  PubMed  CAS  Google Scholar 

  10. Sharma RK, Pasqualotto AE, Nelson DR, Thomas AJ Jr, Agarwal A. Relationship between seminal white blood cell counts and oxidative stress in men treated at an infertility clinic. J Androl. 2001;22(4):575–83.

    PubMed  CAS  Google Scholar 

  11. Aitken RJ, Baker HW. Seminal leukocytes: passengers, terrorists or good samaritans? Hum Reprod. 1995;10(7):1736–9.

    PubMed  CAS  Google Scholar 

  12. Henkel R, Maass G, Hajimohammad M, Menkveld R, Stalf T, Villegas J, Sanchez R, Kruger TF, Schill WB. Urogenital inflammation: changes of leucocytes and ROS. Andrologia 2003;35(5):309–13. Review. doi:10.1046/j.1439-0272.2003.00585.x.

    Article  PubMed  CAS  Google Scholar 

  13. Sikka SC, Rajasekaran M, Hellstrom WJ. Role of oxidative stress and antioxidants in male infertility. J Androl. 1995;16(6):464–8. Review.

    PubMed  CAS  Google Scholar 

  14. Alvarez JG, Storey BT. Differential incorporation of fatty acids into and peroxidative loss of fatty acids from phospholipids of human spermatozoa. Mol Reprod Dev. 1995;42(3):334–46. doi:10.1002/mrd.1080420311.

    Article  PubMed  CAS  Google Scholar 

  15. Sharma RK, Agarwal A. Role of reactive oxygen species in male infertility. Urology 1996;48(6):835–50. doi:10.1016/S0090-4295(96)00313-5.

    Article  PubMed  CAS  Google Scholar 

  16. Wang X, Sharma RK, Gupta A, George V, Thomas AJ, Falcone T, Agarwal A. Alterations in mitochondria membrane potential and oxidative stress in infertile men: a prospective observational study. Fertil Steril. 2003;80:844–50. doi:10.1016/S0015-0282(03)00983-X.

    Article  PubMed  Google Scholar 

  17. Kodama H, Yamaguchi R, Fukuda J, Kasai H, Tanaka T. Increased oxidative deoxyribonucleic acid damage in the spermatozoa of infertile male patients. Fertil Steril. 1997;68(3):519–24. doi:10.1016/S0015-0282(97)00236-7.

    Article  PubMed  CAS  Google Scholar 

  18. Chatterjee S, Chowdhury RG, Khan B. Medical management of male infertility. J Indian Med Assoc. 2006;104(2):74, 76–77.

    PubMed  Google Scholar 

  19. Mousset-Simeon N, Rives N, Masse L, Chevallier F, Mace B. Comparison of six density gradient media for selection of cryopreserved donor spermatozoa. J Androl. 2004;25(6):881–4.

    PubMed  Google Scholar 

  20. Henkel RR, Schill WB. Sperm preparation for ART. Reprod Biol Endocrinol. 2003;1:108. doi:10.1186/1477-7827-1-108.

    Article  PubMed  Google Scholar 

  21. Aitken RJ, Clarkson JS. Significance of reactive oxygen species and antioxidants in defining the efficacy of sperm preparation techniques. J Andro. 1988;9(6):367–76.

    CAS  Google Scholar 

  22. Ford WCL. The role of oxygen free radicals in the pathology of human spermatozoa: implications for IVF. In: Matson PL, Liebermann BA, editors. Clinical IVF Forum: current views in assisted reproduction. Manchester: University Press; 1990. p. 123–39.

    Google Scholar 

  23. Kruger TF, Menkveld R, Stander FS, Lombard CJ, Van der Merwe JP, van Zyl JA, Smith K. Sperm morphologic features as a prognostic factor in in vitro fertilization. Fertil Steril. 1986;46(6):1118–23.

    PubMed  CAS  Google Scholar 

  24. Mortimer D. Practical laboratory andrology. New York: Oxford University Press; 1994. p. 57–8.

    Google Scholar 

  25. Donnelly ET, O’Connell M, McClure N, Lewis SE. Differences in nuclear DNA fragmentation and mitochondrial integrity of semen and prepared human spermatozoa. Hum Reprod. 2000;15(7):1552–61. doi:10.1093/humrep/15.7.1552.

    Article  PubMed  CAS  Google Scholar 

  26. Hrudka F. Cytochemical and ultracytochemical demonstration of cytochrome c oxidase in spermatozoa and dynamics of its changes accompanying ageing or induced by stress. Int J Androl. 1987;10(6):809–28. doi:10.1111/j.1365-2605.1987.tb00385.x.

    Article  PubMed  CAS  Google Scholar 

  27. Comhaire F, Verschraegen G, Vermeulen L. Diagnosis of accessory gland infection and its possible role in male infertility. Int J Androl. 1980;3(1):32–45. doi:10.1111/j.1365-2605.1980.tb00093.x.

    Article  PubMed  CAS  Google Scholar 

  28. Blumer CG, Fariello RM, Restelli AE, Spaine DM, Bertolla RP, Cedenho AP. Sperm nuclear DNA fragmentation and mitochondrial activity in men with varicocele. Fertil Steril. 2008;90(5):1716–22. doi:10.1016/j.fertnstert.2007.09.007.

    Article  PubMed  CAS  Google Scholar 

  29. Agarwal A, Saleh RA, Bedaiwy MA. Role of reactive oxygen species in the pathophysiology of human reproduction. Fertil Steril. 2003;79:829–43. doi:10.1016/S0015-0282(02)04948-8.

    Article  PubMed  Google Scholar 

  30. Turner RM. Tales from the tail: what do we really know about sperm motility? J Androl. 2003;24:790–803.

    PubMed  Google Scholar 

  31. Bourgeron T. Mitochondrial function and male infertility. Results Probl Cell Differ. 2000;28:187–210.

    PubMed  CAS  Google Scholar 

  32. Marnett LJ. Lipid peroxidation—DNA damage by malondialdehyde. Mutat Res. 1999;424:83–95. doi:10.1016/S0027-5107(99)00010-X.

    PubMed  CAS  Google Scholar 

  33. Klaude M, Eriksson S, Nygren J, Ahnstrom G. The comet assay: mechanisms and technical considerations. Mutat Res. 1996;363:89–96.

    PubMed  Google Scholar 

  34. Engel S, Schreiner T, Petzoldt R. Lipid peroxidation in human spermatozoa and maintenance of progressive sperm motility. Andrologia 1999;31:17–22. doi:10.1046/j.1439-0272.1999.00230.x.

    Article  PubMed  CAS  Google Scholar 

  35. Lewis SE, Aitken RJ. DNA damage to spermatozoa has impacts on fertilization and pregnancy. Cell Tissue Res. 2005;322(1):33–41. doi:10.1007/s00441-005-1097-5.

    Article  PubMed  CAS  Google Scholar 

  36. Tomlinson MJ, Barratt CL, Cooke ID. Prospective study of leukocytes and leukocyte subpopulations in semen suggests they are not a cause of male infertility. Fertil Steril. 1993;60(6):1069–75.

    PubMed  CAS  Google Scholar 

  37. Kaleli S, Oçer F, Irez T, Budak E, Aksu MF. Does leukocytospermia associate with poor semen parameters and sperm functions in male infertility? The role of different seminal leukocyte concentrations. Eur J Obstet Gynecol Reprod Biol. 2000;89(2):185–91. doi:10.1016/S0301-2115(99)00204-3.

    Article  PubMed  CAS  Google Scholar 

  38. Zini A, Mak V, Phang D, Jarvi K. Potencial adverse effect of semen processing on human sperm deoxyribonucleic acid integrity. Fertil Steril. 1999;72:496–9. doi:10.1016/S0015-0282(99)00295-2.

    Article  PubMed  CAS  Google Scholar 

  39. Zini A, Finelli A, Phang D, Jarvi K. Influence of semen processing technique on human sperm DNA integrity. Urology 2000;56:1081–4. doi:10.1016/S0090-4295(00)00770-6.

    Article  PubMed  CAS  Google Scholar 

  40. Stevanato J, Bertolla RP, Barradas V, Spaine DM, Cedenho AP, Ortiz V. Semen processing by density gradient centrifugation does not improve sperm apoptotic deoxyribonucleic acid fragmentation rates. Fertil Steril. 2008;90(3):889–90. doi:10.1016/j.fertnstert.2007.01.059.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberta Maria Fariello.

Additional information

Capsule Leukocytospermia leads to an increase in DNA fragmentation, while semen processing leads to a decrease in DNA fragmentation and to an increase in mitochondrial activity.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fariello, R.M., Del Giudice, P.T., Spaine, D.M. et al. Effect of leukocytospermia and processing by discontinuous density gradient on sperm nuclear DNA fragmentation and mitochondrial activity. J Assist Reprod Genet 26, 151–157 (2009). https://doi.org/10.1007/s10815-008-9288-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-008-9288-0

Keywords

Navigation