Skip to main content
Log in

Quantum Chemical Calculations of the Spectroscopic Properties and Nonlinear Optical Activity of 2,6-Dibromo-3-Chloro-4-Fluoroaniline

  • Published:
Journal of Applied Spectroscopy Aims and scope

The Fourier transform infrared (FT-IR) and Fourier transform Raman (FT-Raman) spectra of 2,6-dibromo-3-chloro-4-fluoroaniline in the solid phase were recorded and analyzed. Quantum chemical calculations of the optimized molecular structure, energies, nonlinear optical (NLO) analysis, molecular surfaces, and vibrational analysis of this substance were performed. The obtained results on the geometric structure and vibrational frequencies were compared with the observed data. The calculated highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energies also confirm that charge transfer occurs within the molecule. The detailed vibrational assignments were performed using the HF and DFT calculations, and the potential energy distribution (PED) was obtained by the vibrational energy distribution analysis (VEDA4) program. Finally, the effects of the amino, bromo, chloro, and fluoro substituents on the vibrational frequencies were investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Whysner, L. Vera, and G. M. Williams, Pharmacol. Ther., 71, 107–112 (1996).

    Article  Google Scholar 

  2. H. Tanak, J. Mol. Struct. (Theochem), 905, 5–12 (2010).

    Article  Google Scholar 

  3. M. E. Vaschetto, B. A. Retamal, and A. P. Monkman, J. Mol. Struct. (Theochem), 468, 209–221 (1996).

    Article  Google Scholar 

  4. M. Kubota and S. Ohba, Acta Crystallogr. B: Struct. Sci., 48, 849–854 (1992).

    Article  Google Scholar 

  5. B. K. Sarojini, B. Narayana, H. S. Yathirajan, T. Gerber, B. van Brecht, and R. Betz, Acta Crystallogr. E: Struct. Rep., 69, 240–248 (2013).

    Article  Google Scholar 

  6. R. D. Willett, Inorg. Chem., 40, 966–971 (2001).

    Article  Google Scholar 

  7. C. Glidewell, J. N. Low, J. M. S. Skakle, and J. L. Wardell, Acta Crystallogr. C: Cryst. Struct. Commun., 61, 336–338 (2005).

    Article  Google Scholar 

  8. U. S. Ali, W. A. Siddiqui, A. Ashraf, and M. N. Tahir, Acta Crystallogr. E: Struct. Rep. Online, 68, 1904–1909 (2012).

    Article  Google Scholar 

  9. R. Betz, Crystallogr. Rep., 60, 1049–1052 (2015).

    Article  ADS  Google Scholar 

  10. Gaussian 09, Revision A.11.4, Gaussian, Inc., Wallingford CT (2009).

  11. GaussView, Version 5.0.9, Semichem. Inc., Shawnee Mission KS (2009).

  12. A. D. Becke, J. Chem. Phys., 98, 5648–5652 (1993).

    Article  ADS  Google Scholar 

  13. C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B, 37, 785–789 (1988).

    Article  ADS  Google Scholar 

  14. M. H. Jamroz, Vibrational Energy Distribition Analysis (VEDA 4) Program, Warsaw, Poland (2004).

    Google Scholar 

  15. M. Bakiler, I. V. Maslov, and S. Akyüz, J. Mol. Struct., 482, 379–383 (1999).

    Article  ADS  Google Scholar 

  16. M. Bakiler, I. V. Maslov, and S. Akyüz, J. Mol. Struct., 475, 83–92 (1999).

    Article  ADS  Google Scholar 

  17. E. Kavitha, N. Sundaraganesa, and S. Sebastian, Indian J. Pure Appl. Phys., 48, 20–30 (2010).

    Google Scholar 

  18. L.E. Sutton, Tables of Interatomic Distances, Chemical Society, London (1958).

  19. R. G. Pearson, Proc. Natl. Acad. Sci. USA, 83, 8440–8441 (1986).

    Article  ADS  Google Scholar 

  20. M. Karelson, V. S. Lobanov, and A. R. Katritzky, Chem. Rev., 96, 1027–1044 (1996).

    Article  Google Scholar 

  21. T. C. Koopmans, Physica (Amsterdam), 1, 104–112 (1934).

    Article  ADS  Google Scholar 

  22. Chemical Application of Atomic and Molecular Electrostatic Potentials, Eds. P. Politzer, D. G. Truhlar, Plenum Press, New York (1981).

  23. C. Andraud, T. Brotin, C. Garcia, F. Pelle, P. Goldner, B. Bigot, and A. Collet, J. Am. Chem. Soc., 116, 2094–2103 (1994).

    Article  Google Scholar 

  24. J. P. Abraham, D. Sajan, I. H. Joe, and V. S. Jayakumar, Spectrochim. Acta A, 71, 355–367 (2008).

    Article  ADS  Google Scholar 

  25. P. Karamanis, C. Pouchan, and G. Maroulis, Phys. Rev. A, 77, 013201–013203 (2008).

    Article  ADS  Google Scholar 

  26. S. G. Sağdinc and A. Eşme, Spectrochim. Acta A, 75, 1370–1376 (2010).

    Article  ADS  Google Scholar 

  27. Ü. Ceylan, G. Ö. Tarı, H. Gökçe, and E. Ağar, J. Mol. Struct., 1, 1110–1122 (2016).

    Google Scholar 

  28. V. Arjunan and S. Mohan, J. Mol. Struct., 892, 289–299 (2008).

    Article  ADS  Google Scholar 

  29. V. Arjunan and S. Mohan, Spectrochim. Acta A, 72A, 436–444 (2009).

    Article  ADS  Google Scholar 

  30. H. F. Hameka and J. O. Jensen, J. Mol. Struct. (Theochem), 362, 325–330 (1996).

    Article  Google Scholar 

  31. J. O. Jensen, A. Banerjee, C. N. Merrow, D. Zeroka, and J. M. Lochner, J. Mol. Struct. (Theochem), 531, 323–331 (2000).

    Article  Google Scholar 

  32. A. P. Scott and L. Radom, J. Phys. Chem., 100, 16502–16513 (1996).

    Article  Google Scholar 

  33. M. P. Andersson and P. Uvdal, J. Chem. Phys. A, 109, 2937–2941 (2005).

    Google Scholar 

  34. M. Alcolea Palafox, M. Gill, N. J. Nunez, V. K. Rastogi, and L. Mittal, Int. J. Quant. Chem., 103, 394–421 (2005).

    Article  ADS  Google Scholar 

  35. M. Alcolea Palafox, Int. J. Quant. Chem., 77, 661–684 (2000).

    Article  Google Scholar 

  36. V. Arjunan, P. Ravindran, T. Rani, and S. Mohan, J. Mol. Struct., 988, 91–101 (2011).

    Article  ADS  Google Scholar 

  37. V. Arjunan, P. S. Balamourougane, C. V. Mythili, S. Mohan, and V. Nandhakumar, J. Mol. Struct., 1006, 247–258 (2011).

    Article  ADS  Google Scholar 

  38. S. Muthu and A. Prabakaran, Spectrochim. Acta A, 121, 420–429 (2014).

    Article  ADS  Google Scholar 

  39. M. M. El-Nahass, M. A. Kamel, A. F. El-deeb, A. A. Atta, and S. Y. Huthaily, Spectrochim. Acta A, 79, 443–450 (2011).

    Article  ADS  Google Scholar 

  40. H. Singh, S. Singh, A. Srivastava, P. Tandon, P. Bharti, S. Kumar, and R. Maurya, Spectrochim. Acta A, 120, 405–415 (2014).

    Article  Google Scholar 

  41. E. F. Mooney, Spectrochim. Acta A, 20, 1021–1032 (1964).

    Article  Google Scholar 

  42. C. S. Hiremath, J. Yenagi, and J. Tonannavar, Spectrochim. Acta A, 68, 710–717 (2007).

    Article  ADS  Google Scholar 

  43. G. Socrates, Infrared Characteristic Group Frequencies, John Wiley, GB (1980).

  44. S. Guidara, H Feki, and Y. Abid, Spectrochim. Acta A, 133, 856–866 (2015).

    Article  ADS  Google Scholar 

  45. P. M. Wojciechowski, W. Zierkiewicz, D. Michalska, and P. Hobza, J. Chem. Phys., 118, 1090–1092 (2003).

    Article  Google Scholar 

  46. S. Muthu and J. Uma Maheswari, Spectrochim. Acta A, 92, 154–163 (2012).

    Article  ADS  Google Scholar 

  47. X. Song, M. Yang, E. R. Davidson, and J. P. Reilly, J. Chem. Phys., 99, 3224–3233 (1993).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Eşme.

Additional information

Abstract of article is published in Zhurnal Prikladnoi Spektroskopii, Vol. 84, No. 6, p. 1015, November–December, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eşme, A., Sağdınç, S.G. Quantum Chemical Calculations of the Spectroscopic Properties and Nonlinear Optical Activity of 2,6-Dibromo-3-Chloro-4-Fluoroaniline. J Appl Spectrosc 84, 1098–1107 (2018). https://doi.org/10.1007/s10812-018-0594-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-018-0594-8

Keywords

Navigation