Skip to main content
Log in

Estimation of Lattice Strain in ZnO Nanoparticles Produced by Laser Ablation at Different Temperatures

  • Published:
Journal of Applied Spectroscopy Aims and scope

The effects of water temperature on the characteristics of ZnO nanoparticles produced by laser ablation method in water were investigated experimentally. The nanoparticles were prepared by pulsed laser ablation of a zinc metal target in distilled water at different temperatures. The synthesized ZnO nanoparticles were characterized using X-ray diffraction analysis and transmission electron microscopy. The results show that the produced samples are crystalline with a hexagonal wurtzite phase. Transmission electron microscopy has revealed that the ZnO nanoparticles are spherical. The strain and the crystallite size of the nanoparticles were investigated by X-ray peak broadening. The mean crystallite size of the ZnO nanoparticles estimated from the TEM images is in good agreement with three models of the Williamson–Hall method. According to the results, the size distribution of the produced ZnO nanoparticles depends strongly on the temperature of the ablation environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Y. Lee, Y. T. Haung, W. F. Su, and C. F. Lin, Appl. Phys. Lett., 89, 231116 (2006).

    Article  ADS  Google Scholar 

  2. Y. Gong, T. Andelman, G. F. Neumark, S. O'Brien, and I. L. Kuskovsky, Nanoscale Res. Lett., 2, 297–302 (2007).

    Article  ADS  Google Scholar 

  3. H. Zeng, Z. Li, W. Cai, B. Cao, P. Liu, and S. Yang, J. Phys. Chem. B, 111, 14311–14317 (2007).

    Article  Google Scholar 

  4. A. Abdolvand, S. Z. Khan, Y. Yuan, P. L. Crouse, M. J. J. Schmidt, M. Sharp, Z. Liu, and L. Li, Appl. Phys. A, 91, 365 (2008).

    Article  ADS  Google Scholar 

  5. V. Amendola and M. Meneghetti, Phys. Chem. Chem. Phys., 11, 3805 (2009).

    Article  Google Scholar 

  6. D. Dorranian, E. Solati, and L. Dejam, Appl. Phys. A., 109, 307–314 (2012).

    Article  ADS  Google Scholar 

  7. S. C. Singh and R. Gopal, Appl. Surf. Sci., 258, 2211–2218 (2012).

    Article  ADS  Google Scholar 

  8. E. Solati, M. Mashayekh, and D. Dorranian, Appl. Phys. A, 112, 689–694 (2013).

    Article  ADS  Google Scholar 

  9. E. Solati, L. Dejam, and D. Dorranian, Opt. Laser Technol., 58, 26–32 (2014).

    Article  ADS  Google Scholar 

  10. E. Solati and D. Dorranian, J. Clust. Sci., 26, 727–742 (2015).

    Article  Google Scholar 

  11. Ch. Zhao, Y. Huang, and J. T. Abiade, Mater. Lett., 85, 164–167 (2012).

    Article  Google Scholar 

  12. A. Khorsand Zak, W. H. Abd. Majid, M. E. Abrishami, and R. Yousefi , Solid State Sci., 13, 251–256 (2011).

  13. V. D. Mote, Y. Purushotham, and B. N. Dole, J. Theor. Appl. Phys., 6, 1–8 (2012).

    Article  Google Scholar 

  14. P. Bindu and Sabu Thomas, J. Theor. Appl. Phys., 8, 1–12 (2014).

  15. R. Yogamalar, R. Srinivasan, A. Vinu, K. Ariga, and A. Ch. Bose, Solid State Commun., 149, 1919–1923 (2009).

    Article  ADS  Google Scholar 

  16. C. Suryanarayana and M. G. Norton, X-Ray Diffraction a Practical Approach, Plenum Press, New York (1998).

    Book  Google Scholar 

  17. M. Tiemann, F. Marlow, J. Hartikainen, O. Weiss, and M. Linder, J. Phys. Chem. C, 112, 1463–1467 (2008).

    Article  Google Scholar 

  18. A. J. Saldivar-Garcia, and H. F. Lopez, Metall. Mater. Trans. A, 35, 2517–2523 (2004).

    Article  Google Scholar 

  19. K. Venkateswarlu, A. ChandraBose, and N. Rameshbabu, Physica B, 405, 4256–4261 (2010).

    Article  ADS  Google Scholar 

  20. J. Zhang, Y. Zhang, K.W. Xu, and V. Ji, Solid State Commun., 139, 87–91 (2006).

    Article  ADS  Google Scholar 

  21. J. F. Nye, Physical Properties of Crystals: Their Representation by Tensors and Matrices, Oxford Science Publications, New York (1985).

    MATH  Google Scholar 

  22. H. Zeng, W. Cai, Y. Li, J. Hu, and P. Liu, J. Phys. Chem. B, 109, 18260–18266 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Dorranian.

Additional information

Published in Zhurnal Prikladnoi Spektroskopii, Vol. 84, No. 3, pp. 475–482, May–June, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solati, E., Dorranian, D. Estimation of Lattice Strain in ZnO Nanoparticles Produced by Laser Ablation at Different Temperatures. J Appl Spectrosc 84, 490–497 (2017). https://doi.org/10.1007/s10812-017-0497-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-017-0497-0

Keywords

Navigation