Skip to main content
Log in

Concise review of the genus Vertebrata S.F. Gray (Rhodophyta: Ceramiales)

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

The red algal genus Vertebrata (Ceramiales, Rhodophyta) comprises 30 species of rather small filamentous algae, differing in morphology, distribution, and ecological preferences. In this review we focus on the two most studied Vertebrata species, V. lanosa and V. fucoides. These occur predominantly in cold and temperate waters on the North Atlantic coasts. Both species have recently gained attention due to their specific secondary metabolites, having considerable pharmaceutical potential and also due to their high capacity to accumulate heavy metals and radionuclides. The review summarizes the data on taxonomy, anatomy, cytology, genetics, ecology, distribution, and potential practical application of Vertebrata species. Special emphasis is on the biochemical composition of V. lanosa and V. fucoides, including their specific metabolites, such as bromophenols, organosulfur compounds, and mycosporine-like amino acids. In addition, the biochemistry and ecology of V. lanosa is discussed in the context of its increasing popularity as a spice (“sea truffle”) in several world cuisines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adams NM (1991) The New Zealand species of Polysiphonia Greville (Rhodophyta). New Zealand J Bot 29:411–427

    Article  Google Scholar 

  • Agardh CA (1817) Synopsis algarum Scandinaviae, adjecta dispositione universali algarum. Ex officina Berlingiana, Lund

    Book  Google Scholar 

  • Agardh JG (1863) Species genera et ordines algarum, seu descriptiones succinctae specierum, generum et ordinum, quibus algarum regnum constituitur. Vol. 2: Algas florideas complectens. Part 2, fasc. 3. C.W.K. Gleerup, Lund

    Google Scholar 

  • Arici E, Bat L (2019) Environmental monitoring of heavy metals by common Rhodophyta species in Sinop coastal ecosystem, Turkey. International congress of engineering and life sciences – ICELIS, Kastamonu, Turkey, pp 699–705

  • Arnesen U, Hallenstvet M, Liaaen-Jensen S (1979) More about the carotenoids of red algae. Biochem Syst Ecol 7:87–89

    Article  CAS  Google Scholar 

  • Atmadja WS, Prud'homme van Reine WF (2010) Checklist of the seaweed species biodiversity of Indonesia. Coremap II – LIPI, Jakarta

    Google Scholar 

  • Austin AP (1956) Chromosome counts in the Rhodophyceae. Nature 178:370–371

    Article  Google Scholar 

  • Austin AP (1959) Iron-alum aceto-carmine staining for chromosomes and other anatomical features of Rhodophyceae. Biotech Histochem 34:69–75

    CAS  Google Scholar 

  • Babakhani A, Farvin KHS, Jacobsen C (2016) Antioxidative effect of seaweed extracts in chilled storage of minced Atlantic mackerel (Scomber scombrus): effect on lipid and protein oxidation. Food Bioproc Technol 9:352–364

    Article  CAS  Google Scholar 

  • Bat L, Arici E, Öztekin A (2021) Threats to quality in the coasts of the Black Sea: heavy metal pollution of seawater, sediment, macro-algae and seagrass. In: Shit PK, Adhikary PP, Sengupta D (eds) Spatial modeling and assessment of environmental contaminants. Springer, Cham, pp 289–325

    Chapter  Google Scholar 

  • Bates TS, Lamb BK, Guenther A, Dignon J, Stoiber RE (1992) Sulfur emissions to the atmosphere from natural sources. J Atmos Chem 14:315–337

    Article  CAS  Google Scholar 

  • Batey JF, Turvey JR (1975) The galactan sulphate of the red alga Polysiphonia lanosa. Carbohydr Res 43:133–143

    Article  CAS  PubMed  Google Scholar 

  • Belous OS, Titlyanov EA, Titlyanova TV (2021) Decadal comparison (1950–2020) of benthic marine flora from Central and Southern Vietnam. Phytotaxa 521:249–288

    Article  Google Scholar 

  • Berglund Å (2018) Havets tryffel. En sensorisk studie på olja smaksatt med tryffeltång (Vertebrata lanosa). Examensarbete, Örebro universitet, Örebro, Sverige, 35 pp

  • Bianchi TS, Kautsky L, Argyrou M (1997) Dominant chlorophylls and carotenoids in macroalgae of the Baltic Sea (Baltic proper): their use as potential biomarkers. Sarsia 82:55–62

    Article  Google Scholar 

  • Bjordal MV, Jensen KH, Sjøtun K (2020) A field study of the edible red alga Vertebrata lanosa (Rhodophyta). J Appl Phycol 32:671–681

    Article  Google Scholar 

  • Bjørnland T, Aguilar-Martinez M (1976) Carotenoids in red algae. Phytochemistry 15:291–296

    Article  Google Scholar 

  • Blanes P, Cong C, Cortadi A, Frascaroli M, Gattuso M, García S, González J, Harada M, Matulewicz C, Niwa Y, Prado H, Sala L (2011) Biosorption of trivalent chromium from aqueous solution by red seaweed Polysiphonia nigrescens. J Water Res Protection 3:832–843

    Article  CAS  Google Scholar 

  • Boney AD (1967) Carpospore release in a species of Polysiphonia. J Nat Hist 1:501–504

    Article  Google Scholar 

  • Bunker FSPD, Brodie JA, Maggs CA, Bunker AR (2017) Seaweeds of Britain and Ireland, 2nd edn. Wild Nature Press, Plymouth

    Google Scholar 

  • Callow JA, Callow ME, Evans LV (1979) Nutritional studies on the parasitic red alga Choreocolax polysiphoniae. New Phytol 83:451–462

    Article  CAS  Google Scholar 

  • Campbell SJ (1999) The eco-physiology of macroalgae from a temperate marine embayment in southern Australia. PhD Thesis, Victoria University, Australia, 230 pp

  • Campo E, Guillén S, Marco P, Antolín A, Sánchez C, Oria R, Blanco D (2018) Aroma composition of commercial truffle flavoured oils: does it really smell like truffle? Acta Hortic 1194:1133–1140

    Article  Google Scholar 

  • Cantoni G, Anderson D (1956) Enzymatic cleavage of dimethylpropiothetin by Polysiphonia lanosa. J Biol Chem 222:171–177

    Article  CAS  PubMed  Google Scholar 

  • Cardinal A, Lesage V (1992) Répartition des épiphytes Pilayella littoralis (L.) Kjellm et Polysiphonia lanosa (L.) Tandy sur Ascophyllum nodosum (L.) Le Jol. en baie de Fundy (N.B., Canada). Cah Biol Mar 33:125–135

    Google Scholar 

  • Carreto JI, Carignan MO (2011) Mycosporine-like amino acids: relevant secondary metabolites. Chemical and ecological aspects. Mar Drugs 9:387–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carter PW, Heilbron IM, Lythgoe B (1939) The lipochromes and sterols of the algal classes. Proc R Soc Lond B 128:82–109

    Article  CAS  Google Scholar 

  • Černá M (2011) Seaweed proteins and amino acids as nutraceuticals. In: Kim SK (ed) Advances in food and nutrition research. Academic Press, San Diego, pp 297–312

    Google Scholar 

  • Challenger F, Simpson MI (1948) Studies on biological methylation. Part XII. A precursor of dimethyl sulfide evolved by Polysiphonia fastigiata. Dimethyl-2-carboxyethyl sulphonium hydroxide and its salts. J Chem Soc 1948:1591–1597

    Article  Google Scholar 

  • Chan ECS, McManus EA (1969) Distribution, characterization and nutrition of marine microorganisms from algae Polysiphonia lanosa and Ascophyllum nodosum. Can J Microbiol 15:409–420

    Article  CAS  PubMed  Google Scholar 

  • Chaves H, Singh RB, Khan S, Wilczynska A, Takahashi T (2019) High omega-6/omega-3 fatty acid ratio diets and risk of noncommunicable diseases: is the tissue, the main issue? In: Singh RB, Watson RR, Takahashi T (eds) The role of functional food security in global health. Academic Press, Cambridge, pp 217–259

    Google Scholar 

  • Chevolot-Magueur AM, Lavorel J, Potier P (1974) Mise en évidence de l’activité photosynthétique du pigment de Rytiphlea tinctoria (Clem.) C. Ag. C R Acad Sci 278:261–264

    CAS  Google Scholar 

  • Chevolot-Magueur AM, Cave A, Potier P, Teste J, Chiaroni A, Riche C (1976) Composés bromés de Rytiphlea tinctoria (Rhodophyceae). Phytochemistry 15:767–771

    Article  CAS  Google Scholar 

  • Choi H-G, Kim M-S, Guiry MD, Saunders GW (2001) Phylogenetic relationships of Polysiphonia (Rhodomelaceae, Rhodophyta) and its relatives based on anatomical and nuclear small-subunit rDNA sequence data. Can J Bot 79:1465–1476

    CAS  Google Scholar 

  • Chopin T, Marquis PA, Belyea EP (1996) Seasonal dynamics of phosphorus and nitrogen contents in the brown alga Ascophyllum nodosum (L.) Le Jolis, and its associated species Polysiphonia lanosa (L.) Tandy and Pilayella littoralis (L.) Kjellman, from the Bay of Fundy, Canada. Bot Mar 39:543–552

    Article  CAS  Google Scholar 

  • Christensen T (1967) Two new families and some new names and combinations in the algae. Blumea 15:91–94

    Google Scholar 

  • Ciciotte SL, Thomas RJ (1997) Carbon fixation between Polysiphonia lanosa (Rhodophyceae) and its brown algal host. Am J Bot 84:1614–1616

    Article  CAS  PubMed  Google Scholar 

  • Colin H, Augier J (1939) Un glucide original chez les Floridées du genre Polysiphonia, le d-mannoside α du l-glycérate de sodium. C R Acad Sci 208:1450–1453

    CAS  Google Scholar 

  • Coll J, Oliveira EC (1999) The benthic marine algae of Uruguay. Bot Mar 42:129–135

    Article  Google Scholar 

  • Conrad K, Bernhardt R, Miske V, Schröder K (1998) Die räumliche Verbreitung des Makrophytobenthos und seine Akkumulation von Nährstoffen und Schwermetallen. Teil 2: Akkumulation von Stickstoff, Phosphor und anderen Elementen im Makrophytobenthos des Greifswalder Boddens sowie sein Gehalt an kompatiblen Substanzen und Photosynthesepigmenten. Greifswalder Geographische Arbeiten 16:326–340

    Google Scholar 

  • Cornish ML, Critchley AT, Mouritsen OG (2015) A role for dietary macroalgae in the amelioration of certain risk factors associated with cardiovascular disease. Phycologia 54:649–666

    Article  Google Scholar 

  • Craigie JS (1990) Cell walls. In: Cole KM, Sheath RG (eds) The Biology of Red Algae. Cambridge University Press, Cambridge, pp 221–257

    Google Scholar 

  • Culleré L, Ferreira V, Chevret B, Venturini ME, Sánchez-Gimeno AC, Blanco D (2010) Characterization of aroma active compounds in black truffles (Tuber melanosporum) and summer truffles (Tuber aestivum) by gas chromatography-olfatometry. Food Chem 122:300–306

    Article  Google Scholar 

  • Dembitsky VM, Tolstikov GA (2003) Natural halogenated mononuclear phenol compounds and their derivatives. Chem Sustain Dev 11:567–575

    Google Scholar 

  • Dere S, Dalkiran N, Karacaoglu D, Yildiz G, Dere E (2003) The determination of total protein, total soluble carbohydrate and pigment contents of some macroalgae collected from Gemlik-Karacaali (Bursa) and Erdek-Ormanli (Balikesir) in the Sea of Marmara. Turk Oceanol 45:453–471

    Google Scholar 

  • Díaz-Tapia P, Bárbara I (2013) Seaweeds from sand-covered rocks of the Atlantic Iberian Peninsula. Part 1. The Rhodomelaceae (Ceramiales, Rhodophyta). Cryptogam Algol 34:325–422

    Article  Google Scholar 

  • Díaz-Tapia P, McIvor L, Freshwater DW, Verbruggen H, Wynne MJ, Maggs CA (2017a) The genera Melanothamnus Bornet & Falkenberg and Vertebrata S.F. Gray constitute well-defined clades of the red algal tribe Polysiphonieae (Rhodomelaceae, Ceramiales). Eur J Phycol 52:1–30

    Article  Google Scholar 

  • Díaz-Tapia P, Maggs CA, West JA, Verbruggen H (2017b) Analysis of chloroplast genomes and a supermatrix inform reclassification of the Rhodomelaceae (Rhodophyta). J Phycol 53:920–937

    Article  PubMed  Google Scholar 

  • Duinker A, Kleppe M, Fjære E, Biancarosa I, Heldal HE, Dahl L, Lunestad BT (2020) Knowledge update on macroalgae food and feed safety – based on data generated in the period 2014-2019 by the Institute of Marine Research, Norway. Report. National Institute of Nutrition and Seafood Research (NIFES), Bergen, Norway, pp 1–28

  • Eggert A, Karsten U (2010) Low molecular weight carbohydrates in red algae – an ecophysiological and biochemical perspective. In: Seckbach J, Chapman D (eds) Cellular origins, life in extreme habitats and astrobiology. Red algae in the genomics age. Springer, Berlin, pp 445–456

    Google Scholar 

  • Eriksson BK, Johansson G (2005) Effects of sedimentation on macroalgae: species-specific responses are related to reproductive traits. Oecologia 143:438–448

    Article  CAS  PubMed  Google Scholar 

  • Faria C, Jorge CD, Borges N, Tenreiro S, Outeiro TF, Santos H (2013) Inhibition of formation of α-synuclein inclusions by mannosylglycerate in a yeast model of Parkinson’s disease. Biochim Biophys Acta 1830:4065–4072

    Article  CAS  PubMed  Google Scholar 

  • Farvin KHS, Jacobsen C (2015) Antioxidant activity of seaweed extracts: in vitro assays, evaluation in 5% fish oil-in-water emulsions and characterization. J Am Oil Chem Soc 92:571–587

    Article  Google Scholar 

  • Feldmann J, Tixier R (1947) Sur l’existence d’un nouveau pigment dans les plastes d’une Rhodophycée. C R Acad Sci 225:201–202

    CAS  Google Scholar 

  • Fenizia S, Weissflog J, Pohnert G (2021) Cysteinolic acid is a widely distributed compatible solute of marine microalgae. Mar Drugs 19:683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fleurence J (1999) Seaweed proteins: Biochemical, nutritional aspects and potential uses. Trends Food Sci Technol 10:25–28

    Article  CAS  Google Scholar 

  • Fralick RA, Mathieson AC (1975) Physiological ecology of four Polysiphonia species (Rhodophyta, Ceramiales). Mar Biol 29:29–36

    Article  Google Scholar 

  • Frikha F, Kammoun M, Hammami N, Mchirgui RA, Belbahri L, Gargouri Y, Miled N, Ben-Rebah F (2011) Chemical composition and some biological activities of marine algae collected in Tunisia. Cienc Mar 37:113–124

    Article  CAS  Google Scholar 

  • Fritsch FE (1945) The structure and reproduction of the algae. Vol 2: Foreword, phaeophyceae, rhodophyceae, myxophyceae. Cambridge University Press, Cambridge

    Google Scholar 

  • Garbary DJ, Tarakhovskaya ER (2013) Marine macroalgae and associated flowering plants from the Keret Archipelago, White Sea, Russia. Algae 28:267–280

    Article  Google Scholar 

  • Garbary D, Burke J, Lining T (1991) The Ascophyllum/Polysiphonia/Mycosphaerella symbiosis. II. Aspects of the ecology and distribution of Polysiphonia lanosa in Nova Scotia. Bot Mar 34:391–401

    Article  Google Scholar 

  • Garbary DJ, Deckert RJ, Hubbard CB (2005) Ascophyllum and its symbionts. VIII. Interactions among Ascophyllum nodosum (Phaeophyceae), Mycophycias ascophylli (Ascomycetes) and Elachista fucicola (Phaeophyceae). Algae 20:363–368

    Article  Google Scholar 

  • Garbary DJ, Miller AG, Scrosati RA (2014) Ascophyllum nodosum and its symbionts: XI. The epiphyte Vertebrata lanosa performs better photosynthetically when attached to Ascophyllum than when alone. Algae 29:321–331

    Article  CAS  Google Scholar 

  • Geraldes V, Pinto E (2021) Mycosporine-like amino acids (MAAs): biology, chemistry and identification features. Pharmaceuticals 14:63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glombitza KW, Stoffelen H (1972) 2,3-dibrom-5-hydroxybenzyl-1',4-disulfat (Dikaliumsalz) aus Rhodomelaceen. Planta Medica 22:391–395

    Article  CAS  PubMed  Google Scholar 

  • Glombitza KW, Sukopp I, Wiedenfeld H (1985) Antibiotics from algae XXXVII. Rhodomelol and methylrhodomelol from Polysiphonia lanosa. Planta Medica 51:437–440

    Article  CAS  PubMed  Google Scholar 

  • Goff LJ, Coleman AW (1986) A novel pattern of apical cell poly ploidy, sequential polyploidy reduction and inter cellular nuclear transfer in the red alga Polysiphonia. Am J Bot 73:1109–1130

    Article  CAS  Google Scholar 

  • Goff LJ, Moon DA, Nyvall P, Stache B, Mangin K, Zuccarello G (1996) The evolution of parasitism in the red algae: molecular comparisons of adelphoparasites and their hosts. J Phycol 32:297–312

    Article  CAS  Google Scholar 

  • Gray SF (1821) A natural arrangement of British plants, according to their relations to each other, as pointed out by Jussieu, De Candolle, Brown, &С. including those cultivated for use; with an introduction to botany, in which the terms newly introduced are explained; illustrated by figures, vol 1. Baldwin, Cradock & Joy, London

  • Greger M, Malm T, Kautsky L (2007) Heavy metal transfer from composted macroalgae to crops. Eur J Agron 26:257–265

    Article  CAS  Google Scholar 

  • Greville RK (1824) Flora edinensis: or a description of plants growing near Edinburgh, arranged according to the Linnean system, with a concise introduction to the natural orders of the class Cryptogamia, and illustrated plates. William Blackwood, Edinburgh; T. Cadell, London

  • Guiry MD, Guiry GM (2021) AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. https://www.algaebase.org. Accessed on 11 April 2022

  • Gunnerus JE (1772) Flora norvegica, observationibus praesertim oeconomicis panosque norvegici locupletata. Pars posterior, cum iconibus. Impensis Frederici Christiani Pelt., Copenhagen

  • Halat L, Galway ME, Gitto S, Garbary DJ (2015) Epidermal shedding in Ascophyllum nodosum (Phaeophyceae): seasonality, productivity and relationship to harvesting. Phycologia 54:599–608

    Article  CAS  Google Scholar 

  • Hallahan B, Garland MR (2005) Essential fatty acids and mental health. Br J Psych 186:275–277

    Article  Google Scholar 

  • Hamon N, Mouline CC, Travert M (2017) Synthesis of mannosylglycerate derivatives as immunostimulating agents. Eur J Org Chem:4803–4819

  • Harlin MM, Craigie JS (1975) The distribution of photosynthate in Ascophyllum nodosum as it relates to epiphytic Polysiphonia lanosa. J Phycol 11:109–113

    Google Scholar 

  • Hass P (1935) The liberation of methyl sulphide by seaweed. Biochem J 29:1297–1299

    Article  Google Scholar 

  • Hehre EJ, Mathieson AC (1970) Investigations of New England marine algae III. Composition, seasonal occurrence and reproductive periodicity of the marine Rhodophyceae in New Hampshire. Rhodora 72:194–239

    Google Scholar 

  • Hofer S, Hartmann A, Orfanoudaki M, Ngoc HN, Nagl M, Karsten U, Heesch S, Ganzera M (2019) Development and validation of an HPLC method for the quantitative analysis of bromophenolic compounds in the red alga Vertebrata lanosa. Mar Drugs 17:675

    Article  CAS  PubMed Central  Google Scholar 

  • Hudson W (1762) Flora anglica, exhibens plantas per regnum angliae sponte crescentes, distributas secundum systema sexuale: cum differentiis specierum, synonymis auctorum, nominibus incolarum, solo locorum, tempore florendi, ofììcinalibus pharmacopoeorum. J. Nourse et C. Moran, London

  • Hudson W (1778) Flora anglica, exhibens plantas per regnum Britanniæ sponte crescentes, distributas secundum systema sexuale: cum differentiis specierum, synonymis auctorum, nominibus incolarum, solo locorum, tempore florendi, officinalibus pharmacopæorum. Tomus II. Editio altera, emendata et aucta. J. Nourse, London

  • Ignatova TA, Podkorytova AV (2021) Red alga Polysiphonia fucoides growing in community with Ahnfeltia plicata, its influence on the yield and quality of agar. IOP Conf Ser: Earth Environ Sci 848:012206

    Article  Google Scholar 

  • Ito K, Hori K (1989) Seaweed: chemical composition and potential food uses. Food Rev Int 5:101–144

    Article  CAS  Google Scholar 

  • Jiao G, Yu G, Wang W, Zhao X, Zhang J, Ewart SH (2012) Properties of polysaccharides in several seaweeds from Atlantic Canada and their potential anti-influenza viral activities. J Ocean Univ China 11:205–212

    Article  CAS  Google Scholar 

  • Kaczmarska I, Dowe LL (1997) Reproductive biology of the red alga Polysiphonia lanosa (Ceramiales) in the Bay of Fundy, Canada. Mar Biol 128:695–703

    Article  Google Scholar 

  • Kain JM, Norton TA (1990) Marine ecology. In: Cole KM, Sheath RG (eds) The biology of red algae. Cambridge University Press, Cambridge, pp 377–422

    Google Scholar 

  • Kapraun DF (1993) Karyology and cytophotometric estimation of nuclear DNA variation in several species of Polysiphonia (Rhodophyta, Ceramiales). Bot Mar 36:507–516

    Article  Google Scholar 

  • Kapraun DF, Freshwater DW (2012) Estimates of nuclear DNA content in red algal lineages. AoB Plants pls005

  • Karcz MJ, Garbary DJ (2021) Population ecology of the red algal parasite Choreocolax polysiphoniae (Rhodomelaceae, Ceramiales), from Nova Scotia, Canada. Symbiosis 85:225–232

    Article  CAS  Google Scholar 

  • Karsten U, Kuck C, Daniel C, Wiencke C, Kirst GO (1994) A method for complete determination of dimethylsulfoniopropionate (DMSP) in marine macroalgae for different geographical regions. Phycologia 33:171–176

    Article  Google Scholar 

  • Karsten U, Görs S, Eggert A, West JA (2007) Trehalose, digeneaside and floridoside in the Florideophyceae (Rhodophyta) – A re-evaluation of its chemotaxonomic value. Phycologia 46:143–150

    Article  Google Scholar 

  • Kim MS, Lee IK, Guiry MD (2002) Vegetative and reproductive morphology of Polysiphonia lanosa (Rhodomelaceae, Rhodophyta) from Ireland. Bot Mar 45:293–302

    Article  Google Scholar 

  • King RJ, Schramm W (1976) Photosynthetic rates of benthic marine algae in relation to light intensity and seasonal variations. Mar Biol 37:215–222

    Article  CAS  Google Scholar 

  • Kleiven W, Johnsen G, Van Ardelan M (2019) Sea surface microlayer and elemental composition in phaeo-, chloro-, and rhodophytes in winter and spring. J Phycol 55:762–774

    Article  CAS  PubMed  Google Scholar 

  • Knighton E, Wilson E, Garbary D (2021) The ‘sea truffle’, Vertebrata lanosa (Rhodophyta), a new seaweed resource for commercial exploitation on shores of Nova Scotia. Phycologia 60:20

    Google Scholar 

  • Kugrens P (1980) Electron microscopic observations on the differentiation and release of spermatia in the marine red alga Polysiphonia hendryi (Ceramiales, Rhodomelaceae). Am J Bot 67:519–528

    Article  Google Scholar 

  • Kylin H (1956) Die Gattungen der Rhodophyceen. C.W.K. Gleerup, Lund

    Google Scholar 

  • Lahaye M (1991) Marine algae as sources of fibres: determination of soluble and insoluble dietary fibre contents in some “Sea vegetables”. J Sci Food Agric 54:587–594

    Article  CAS  Google Scholar 

  • Lalegerie F, Lajili S, Bedoux G, Taupin L, Stiger-Pouvreau V, Connan S (2019) Photo-protective compounds in red macroalgae from Brittany: Considerable diversity in mycosporine-like amino acids (MAAs). Mar Environ Res 147:37–48

    Article  CAS  PubMed  Google Scholar 

  • Lee RE (2008) Phycology, 4th edn. Cambridge University Press, New York

    Book  Google Scholar 

  • Lemesheva V, Tarakhovskaya E (2018) Physiological functions of phlorotannins. Biol Comm 63:70–76

    Article  Google Scholar 

  • Lever J, Curtis G, Brkljača R, Urban S (2019) Bromophenolics from the red alga Polysiphonia decipiens. Mar Drugs 17:497

    Article  CAS  PubMed Central  Google Scholar 

  • Lining T, Garbary DJ (1992) The Ascophyllum/Polysiphonia/Mycosphaerella symbiosis. III. Experimental studies on the interactions between P. lanosa and A. nodosum. Bot Mar 35:341–349

    Article  Google Scholar 

  • Linnaeus C (1767) Systema naturae per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus & differentiis. T. II. Editio duodecima, reformata. Impensis direct. Laurentii Salvii, Stockholm

    Google Scholar 

  • Liu M, Hansen PE, Lin X (2011) Bromophenols in marine algae and their bioactivities. Mar Drugs 9:1273–1292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Longtin CM, Scrosati RA (2009) Role of surface wounds and brown algal epiphytes in the colonization of Ascophyllum nodosum (Phaeophyceae) fronds by Vertebrata lanosa (Rhodophyta). J Phycol 45:535–539

    Article  PubMed  Google Scholar 

  • Ma M, Zhao J, Wang S, Li S, Yang Y, Shi J, Fan X, He L (2006) Bromophenols coupled with methyl γ-ureidobutyrate and bromophenol sulfates from the red alga Rhodomela confervoides. J Nat Prod 69:206–210

    Article  CAS  PubMed  Google Scholar 

  • Mæhre HK, Malde MK, Eilertsen K-E, Elvevoll EO (2014) Characterization of protein, lipid and mineral contents in common Norwegian seaweeds and evaluation of their potential as food and feed. J Sci Food Agric 94:3281–3290

    Article  PubMed  Google Scholar 

  • Marquardt J, Hanelt D (2004) Carotenoid composition of Delesseria lancifolia and other marine red algae from polar and temperate habitats. Eur J Phycol 39:285–292

    Article  CAS  Google Scholar 

  • Mathieson AC, Dawes CJ (2017) Seaweeds of the Northwest Atlantic. University of Massachusetts Press, Amherst

    Google Scholar 

  • Messyasz B, Michalak I, Łęska B, Schroeder G, Górka B, Korzeniowska K, Lipok J, Wieczorek P, Rój E, Wilk R, Dobrzyńska-Inger A, Górecki H, Chojnacka K (2018) Valuable natural products from marine and freshwater macroalgae obtained from supercritical fluid extracts. J Appl Phycol 30:591–603

    Article  CAS  PubMed  Google Scholar 

  • Mikhaylova TA (2021) A comprehensive bibliography, updated checklist, and distribution patterns of Rhodophyta from the Barents Sea (the Arctic Ocean). Bot Mar 64:211–220

    Article  Google Scholar 

  • Miller IJ (2003) Evaluation of the structures of polysaccharides from two New Zealand members of the Rhodomelaceae by 13C NMR spectroscopy. Bot Mar 46:386–391

    CAS  Google Scholar 

  • Mišurcová L (2012) Chemical composition of seaweeds. In: Kim S-K (ed) Handbook of marine macroalgae: biotechnology and applied phycology. Wiley-Blackwell, Oxford, pp 173–192

    Google Scholar 

  • Mouritsen OG, Rhatigan P, Pérez-Lloréns JL (2019) The rise of seaweed gastronomy: phycogastronomy. Bot Mar 62:195–209

    Article  Google Scholar 

  • Murphy V, Hughes H, McLoughlin P (2008) Comparative study of chromium biosorption by red, green and brown seaweed biomass. Chemosphere 70:1128–1134

    Article  CAS  PubMed  Google Scholar 

  • Murphy V, Hughes H, McLoughlin P (2009) Enhancement strategies for Cu(II), Cr(III) and Cr(VI) remediation by a variety of seaweed species. J Hazard Mat 166:318–326

    Article  CAS  Google Scholar 

  • O’hEocha C (1961) Spectrophotometric studies of some red algal constituents. Colloq Intern Centre Nat Rech Sci 103:121–134

    Google Scholar 

  • Oh KB, Lee JH, Chung SC, Shin J, Shin HJ, Kim HK, Lee HS (2008) Antimicrobial activities of the bromophenols from the red alga Odonthalia corymbifera and some synthetic derivatives. Bioorg Med Chem Lett 18:104–108

    Article  CAS  PubMed  Google Scholar 

  • Olsen EK, Hansen E, Isaksson J, Andersen JH (2013) Cellular antioxidant effect of four bromophenols from the red algae, Vertebrata lanosa. Mar Drugs 11:2769–2784

    Article  PubMed  PubMed Central  Google Scholar 

  • Oren A, Gunde-Cimerman N (2007) Mycosporines and mycosporine-like amino acids: UV protectants or multipurpose secondary metabolites? FEMS Microbiol Lett 269:1–10

    Article  CAS  PubMed  Google Scholar 

  • Pangestuti R, Kim SK (2015) Seaweed proteins, peptides, and amino acids. In: Tiwari BK, Troy DJ (eds) Seaweed Sustainability. Academic Press, London, pp 125–140

    Chapter  Google Scholar 

  • Park SH, Song JH, Kim T, Shin WS, Park GM, Lee S, Kim YJ, Choi P, Kim H, Kim HS, Kwon DH, Choi HJ, Ham J (2012) Anti-human rhinoviral activity of polybromocatechol compounds isolated from the Rhodophyta, Neorhodomela aculeata. Mar Drugs 10:2222–2233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pearson GA, Evans LV (1990) Settlement and survival of Polysiphonia lanosa (Ceramiales) spores on Ascophyllum nodosum and Fucus vesiculosus (Fucales). J Phycol 26:597–603

    Article  Google Scholar 

  • Pearson GA, Evans LV (1991) Stimulation of secondary rhizoid production in Polysiphonia lanosa by brown algal tissues and exudates. Br Phycol J 26:93–94

    Google Scholar 

  • Pedersen M (1978) Bromochlorophenols and a brominated diphenylmethane in red algae. Phytochemistry 17:291–293

    Article  CAS  Google Scholar 

  • Pedersen M, Saenger P, Fries L (1974) Simple brominated phenols in red algae. Phytochemistry 13:2273–2279

    Article  CAS  Google Scholar 

  • Pedersen M, Saenger P, Rowan KS, Hofsten AV (1979) Bromine, bromophenols and floridorubin in the red alga Lenormandia prolifera. Physiol Plant 46:121–126

    Article  CAS  Google Scholar 

  • Pedersen M, Roomans GM, Hofsten A (1981) Bromine in the cuticle of Polysiphonia nigrescens: localization and content. J Phycol 17:105–108

    Article  CAS  Google Scholar 

  • Penot M, Hourmant A, Penot M (1993) Comparative study of metabolism and forms of transport between Ascophyllum nodosum and Polysiphonia lanosa. Physiol Plant 87:291–296

    Article  CAS  Google Scholar 

  • Pereira L, Morrison L, Shukla PS, Critchley AT (2020) A concise review of the brown macroalga Ascophyllum nodosum (Linnaeus) Le Jolis. J Appl Phycol 32:3561–3584

    Article  CAS  Google Scholar 

  • Pettitt TR, Harwood JL (1989) Alterations in lipid metabolism caused by illumination of the marine red algae Chondrus crispus and Polysiphonia lanosa. Phytochemistry 28:3295–3300

    Article  CAS  Google Scholar 

  • Pettitt TR, Jones AL, Harwood JL (1989) Lipids of the marine red algae, Chondrus crispus and Polysiphonia lanosa. Phytochemistry 28:399–405

    Article  CAS  Google Scholar 

  • Phang S-M, Yeong H-Y, Ganzon-Fortes ET, Lewmanomont K, Prathep A, Hau LN, Gerung GS, Tan KS (2016) Marine algae of the South China Sea bordered by Indonesia, Malaysia, Philippines, Singapore, Thailand and Vietnam. Raffles Bull Zool Suppl 40:13–59

    Google Scholar 

  • Pierre G, Delattre C, Laroche C, Michaud P (2015) Galactans and its applications. In: Ramawat KG, Mérillon J-M (eds) Polysaccharides: bioactivity and biotechnology. Springer, Cham, pp 753–794

    Chapter  Google Scholar 

  • Piloni M, Tat L, Tonizzo A, Battistutta F (2005) Aroma characterization of white truffle by GC-MS and GC-O. Ital J Food Sci 17:463–468

    CAS  Google Scholar 

  • Prado HJ, Ciancia M, Matulewicz MC (2008) Agarans from the red seaweed Polysiphonia nigrescens (Rhodomelaceae, Ceramiales). Carbohydr Res 343:711–718

    Article  CAS  PubMed  Google Scholar 

  • Preuss M, Zuccarello GC (2019) Development of the red algal parasite Vertebrata aterrimophila sp. nov. (Rhodomelaceae, Ceramiales) from New Zealand. Eur J Phycol 54:175–183

    Article  Google Scholar 

  • Ramos MV, Monteito ACO, Moreira RA, Carvalho A (2000) Amino acid composition of some Brazilian seaweed species. J Food Biochem 24:33–39

    Article  CAS  Google Scholar 

  • Rawlence DJ (1972) An ultrastructural study of the relationship between rhizoids of Polysiphonia lanosa (L.) Tandy (Rhodophyceae) and tissue of Ascophyllum nodosum (L.) Le Jolis (Phaeophyceae). Phycologia 11:279–290

    Article  Google Scholar 

  • Rawlence DJ, Taylor ARA (1970) The rhizoids of Polysiphonia lanosa. Can J Bot 48:607–611

    Article  Google Scholar 

  • Reed RH (1983a) Measurement and osmotic significance of beta-dimethylsulfoniopropionate in marine macroalgae. Mar Biol Lett 4:173–181

    CAS  Google Scholar 

  • Reed RH (1983b) The osmotic responses of Polysiphonia lanosa (L.) Tandy from marine and estuarine sites: Evidence for incomplete recovery of turgor. J Exp Mar Biol Ecol 68:169–193

    Article  CAS  Google Scholar 

  • Reed RH (1990) Solute accumulation and osmotic adjustment. In: Cole KM, Sheath RG (eds) The biology of red algae. Cambridge University Press, Cambridge, pp 147–170

    Google Scholar 

  • Roth AW (1797) Catalecta botanica quibus plantae novae et minus cognitae describuntur atque illustrantur. Fasc. 1. Bibliopolo I.G. Mülleriano, Leipzig

    Book  Google Scholar 

  • Roth AW (1800) Tentamen florae Germanicae continens enumerationem plantarum in Germania sponte nascentium. T. III. Bibliopolio Gleditschiano, Leipzig

    Google Scholar 

  • Rowan KS (1989) Photosynthetic pigments of algae. Cambridge University Press, New York

    Google Scholar 

  • Ryan S, McLoughlin P, O’Donovan O (2012) A comprehensive study of metal distribution in three main classes of seaweed. Environ Pollut 167:171–177

    Article  CAS  PubMed  Google Scholar 

  • Ryu J, Kanapathipillai M, Lentzen G, Park CB (2008) Inhibition of β-amyloid peptide aggregation and neurotoxicity by α-D-mannosylglycerate, a natural extremolyte. Peptides 29:578–584

    Article  CAS  PubMed  Google Scholar 

  • Salomaki ED, Lane CE (2017) Red algal mitochondrial genomes are more complete than previously reported. Genome Biol Evol 9:48–63

    CAS  PubMed  Google Scholar 

  • Salomaki ED, Nickles KR, Lane CE (2015) The ghost plastid of Choreocolax polysiphoniae. J Phycol 51:217–221

    Article  CAS  PubMed  Google Scholar 

  • Savoie AM, Saunders GW (2019) A molecular assessment of species diversity and generic boundaries in the red algal tribes Polysiphonieae and Streblocladieae (Rhodomelaceae, Rhodophyta) in Canada. Eur J Phycol 54:1–25

    Article  CAS  Google Scholar 

  • Scholz B, Ólafsson HG, Küpper FC, Einarsson H, Karsten U (2016) Ræktun sjávargróðurs - Commercial utilisation of northern Icelandic seaweeds in a closed aqua culturing system. BioPol ehf. Marine Biotechnology, Skagaströnd, Iceland. Final Report for VNV 2014-201665, pp 1–34

  • Schubert N, García-Mendoza E (2006) Carotenoid composition of marine red algae. J Phycol 42:1208–1216

    Article  CAS  Google Scholar 

  • Shanab SMM, Hafez RM, Fouad AS (2018) A review on algae and plants as potential source of arachidonic acid. J Adv Res 11:3–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shoeib NA, Bibby MC, Blunden G, Linley PA, Swaine DJ, Wheelhouse RT, Wright CW (2004) In vitro cytotoxic activities of the major bromophenols of the red alga Polysiphonia lanosa and some novel synthetic isomers. J Nat Prod 67:1445–1449

    Article  CAS  PubMed  Google Scholar 

  • Shoeib NA, Bibby MC, Blunden G, Linley PA, Swaine DA, Wright CA (2005) Seasonal variation in bromophenol content of Polysiphonia lanosa. Nat Prod Commun 1:47–49

    Google Scholar 

  • Stengel DB, Macken A, Morrison L, Morley N (2004) Zinc concentrations in marine macroalgae and a lichen from western Ireland in relation to phylogenetic grouping, habitat, and morphology. Mar Poll Bull 48:902–909

    Article  CAS  Google Scholar 

  • Stoffelen H, Glombitza KW, Murawski U, Bielaczek J, Egge H (1972) Bromphenole aus Polysiphonia lanosa (L.) Tandy. Planta Medica 22:396–401

    Article  CAS  PubMed  Google Scholar 

  • Sunda WG, Kieber D, Kiene R, Huntsman S (2002) An antioxidant function for DMSP and DMS in marine algae. Nature 418:317–320

    Article  CAS  PubMed  Google Scholar 

  • Tandy G (1931) Notes on phycological nomenclature. J Bot 69:225–227

    Google Scholar 

  • Tariq V-N (1991) Antifungal activity in crude extracts of marine red algae. Mycol Res 95:1433–1440

    Article  Google Scholar 

  • Turner CHC, Evans LV (1978) Translocation of photoassimilated 14C in the red alga Polysiphonia lanosa. Br Phycol J 13:51–55

    Article  Google Scholar 

  • Valverde J, Hayes M, McLoughlin P, Rai D, Soler-Vila A (2015) Cardioprotective potential of Irish macroalgae: generation of glycine betaine and dimethylsulfoniopropionate containing extracts by accelerated solvent extraction. Planta Medica 81:679–684

    Article  CAS  PubMed  Google Scholar 

  • Van Alstyne KL (2008) Ecological and physiological roles of dimethylsulfoniopropionate and its products in marine macroalgae. In: Amsler CD (ed) Algal chemical ecology. Springer, Berlin, pp 173–194

    Chapter  Google Scholar 

  • Van Alstyne KL, Puglisi MP (2007) DMSP in marine macroalgae and macroinvertebrates: Distribution, function, and ecological impacts. Aquat Sci 69:394–402

    Article  Google Scholar 

  • Van Alstyne KL, Wolfe GV, Freidenburg TL, Neill A, Hicken C (2001) Activated defense systems in marine macroalgae: evidence for an ecological role for DMSP cleavage. Mar Ecol Prog Ser 213:53–65

    Article  Google Scholar 

  • Verbruggen H, Costa JF (2015) The plastid genome of the red alga Laurencia. J Phycol 51:586–589

    Article  CAS  PubMed  Google Scholar 

  • Vinogradova KL (2011) The order Ceramiales (Rhodophyta) in the flora of the Arctic Ocean. Botanicheskii Zhurnal 96:681–695 (in Russian with English summary)

    Google Scholar 

  • Wahlenberg G (1812) Flora lapponica exhibens plantas geographice et botanice consideratas, in lapponiis svecicis scilicet umensi, pitensi, lulensi, tornensi et kemensi nec non lapponiis norvegicis scilicet nordlandia et finmarkis utraque indigenas et itineribus annorum 1800, 1802, 1807 et 1810 denuo investigatas. Taberna Libraria Scholae Realis, Berlin

  • Wallentinus I (1984) Comparisons of nutrient uptake rates for Baltic macroalgae with different thallus morphologies. Mar Biol 80:215–225

    Article  CAS  Google Scholar 

  • Wang B-G, Gloer JB, Ji N-Y, Zhao J-C (2013) Halogenated organic molecules of Rhodomelaceae origin: chemistry and biology. Chem Rev 113:3632–3685

    Article  CAS  PubMed  Google Scholar 

  • Wetherbee R (1980) Postfertilization development in the red alga Polysiphonia. 1. Proliferation of the carposporophyte. J Ultrastruct Res 70:259–274

    Article  CAS  PubMed  Google Scholar 

  • WFO (2022): Hornungia Rchb. Published on the Internet; http://www.worldfloraonline.org/taxon/wfo-4000018297. Accessed on: 19 May 2022

  • Wickberg B (1957) Isolation of 2-L-amino-3-hydroxy-1-propanesulphonic acid from Polysiphonia fastigiata. Acta Chem Scand 11:506–511

    Article  CAS  Google Scholar 

  • Wong KH, Cheung PCK (2001) Nutritional evaluation of some subtropical red and green seaweeds. Part II. In vitro protein digestibility and amino acid profiles of protein concentrates. Food Chem 72:11–17

    Article  CAS  Google Scholar 

  • Xu NJ, Fan X, Yan XJ, Li XC, Niu RL, Tseng CK (2003) Antibacterial bromophenols from the marine red alga Rhodomela confervoides. Phytochemistry 62:1221–1224

    Article  CAS  PubMed  Google Scholar 

  • Yanshin N, Kushnareva A, Lemesheva V, Birkemeyer C, Tarakhovskaya E (2021) Chemical composition and potential practical application of 15 red algal species from the White Sea coast (the Arctic Ocean). Molecules 26:2489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zalewska T (2014) Bioaccumulation of gamma emitting radionuclides in Polysiphonia fucoides. J Radioanal Nucl Chem 299:1489–1497

    Article  CAS  PubMed  Google Scholar 

  • Zalewska T, Saniewski M (2011) Bioaccumulation of gamma emitting radionuclides in red algae from the Baltic Sea under laboratory conditions. Oceanologia 53:631–650

    Article  Google Scholar 

  • Zinova AD (1955) Red algae of the Northern seas of the U.S.S.R. Izdatel’stvo Akademii Nauk SSSR, Moscow, Leningrad (in Russian)

  • Zubia M, Fabre M-S, Kerjean V, Deslandes E (2009) Antioxidant and cytotoxic activities of some red algae (Rhodophyta) from Brittany coasts (France). Bot Mar 52:268–277

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Marine Biological Station “UNB Belomorskaya” for support and providing facilities. We also thank Dr. David Garbary for providing some key literature and help with manuscript editing.

Funding

This research was funded by the Russian Foundation for Basic Research (project 20-04-00944).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed substantially to the design of the work, drafted and revised the manuscript, and finally approved it to be published.

Corresponding author

Correspondence to Elena Tarakhovskaya.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarakhovskaya, E., Zuy, E., Yanshin, N. et al. Concise review of the genus Vertebrata S.F. Gray (Rhodophyta: Ceramiales). J Appl Phycol 34, 2225–2242 (2022). https://doi.org/10.1007/s10811-022-02805-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-022-02805-z

Keywords

Navigation