Skip to main content
Log in

Wastewater treatment using Scenedesmus almeriensis: effect of operational conditions on the composition of the microalgae-bacteria consortia

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Primary urban wastewater was treated in outdoor raceways using microalgae-bacteria consortia dominated by Scenedesmus almeriensis. The current study aimed at assessing the effect of operational conditions, namely, culture depth and dilution rate, on the following: (i) biomass productivity, (ii) the nutrient removal capacity and (iii) the composition of the microalgae-bacteria consortium and the presence of unwanted microorganisms. Optimum dilution rates to process large quantities of wastewater during summer and achieve high biomass productivities were 0.3–0.5 day−1. Under the optimum operational conditions, nitrogen and phosphorus removal rates were higher than 90% while removal of chemical oxygen demand was 70%. Operating at different culture depths had a striking effect on the composition of the microalgae-bacteria consortium. The relative abundance of nitrifiers increased with culture depth and was minimised at 0.05 m: larger culture depths led to enhanced nitrifying activity and therefore to nitrate production and accumulation in the system. Results demonstrate the potential of microalgae-based wastewater treatment processes and the importance of selecting suitable operational conditions to maximise both, biomass production and nutrient removal by minimising the occurrence of nitrifying bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Data from the SABANA Project are available at http://www2.ual.es/sa-347 bana/data-centre-2/.

References

  • Acién-Fernández FG, Fernández Sevilla JM, Molina Grima E (2013) Photobioreactors for the production of microalgae. Rev Environ Sci Bio/technology 12:131–151

    Article  CAS  Google Scholar 

  • Acién-Fernández FG, Hall DO, Cañizares Guerrero E, Krishna Rao K, Molina Grima E (2003) Outdoor production of Phaeodactylum tricornutum biomass in a helical reactor. J Biotechnol 103:137–152

    Article  CAS  PubMed  Google Scholar 

  • Allen MB, Arnon DI (1955) Studies on nitrogen-fixing blue-green algae. Physiol Plant 30:653–660

    Article  Google Scholar 

  • Balkema AJ, Preisig HA, Otterpohl R, Lambert FJD (2002) Indicators for the sustainability assessment of wastewater treatment systems. Urban Water 4:153–161

    Article  CAS  Google Scholar 

  • Barceló-Villalobos M, Fernández-del Olmo P, Guzmán JL, Fernández-Sevilla JM, Acién-Fernández FG (2019) Evaluation of photosynthetic light integration by microalgae in a pilot-scale raceway reactor. Bioresour Technol 280:404–411

    Article  CAS  PubMed  Google Scholar 

  • Beuckels A, Smolders E, Muylaert K (2015) Nitrogen availability influences phosphorus removal in microalgae-based wastewater treatment. Water Res 77:98–106

    Article  CAS  PubMed  Google Scholar 

  • BOE (1982) Métodos Oficiales de Análisis: Suelos y Aguas. BOE 78:6458–6491

    Google Scholar 

  • Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Gonzalez Peña A, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chai WS, Tan WG, HalimatulMunawaroh HS, Kumar Gupta V, Ho S, Show PL (2021) Multifaceted roles of microalgae in the application of wastewater biotreatment: a review. Environ Pollut 269:116236

    Article  CAS  PubMed  Google Scholar 

  • Collao J, del Morales-Amaral M, M, Acién-Fernández FG, Bolado-Rodríguez S, Fernandez-González N (2021) Effect of operational parameters, environmental conditions, and biotic interactions on bacterial communities present in urban wastewater treatment photobioreactors. Chemosphere 284:131271

    Article  CAS  PubMed  Google Scholar 

  • Collos Y, Harrison PJ (2014) Acclimation and toxicity of high ammonium concentrations to unicellular algae. Mar Pollut Bull 80:8–23

    Article  CAS  PubMed  Google Scholar 

  • Cooper MB, Smith AG (2015) Exploring mutualistic interactions between microalgae and bacteria in the omics age. Curr Opin Plant Biol 26:147–153

    Article  PubMed  Google Scholar 

  • Craggs RJ, Lundquist TJ, Benemann JR (2013) Wastewater treatment and algal biofuel production. In: Borowitzka MA, Moheimani N (eds) Algae for Biofuels and Energy. Springer, Dordrecht, pp 153–163

    Chapter  Google Scholar 

  • de Godos I, Arbib Z, Lara E, Rogalla F (2016) Evaluation of high rate algae ponds for treatment of anaerobically digested wastewater: effect of CO2 addition and modification of dilution rate. Bioresour Technol 220:253–261

    Article  CAS  PubMed  Google Scholar 

  • Delgadillo-Mirquez L, Lopes F, Taidi B, Pareau D (2016) Nitrogen and phosphate removal from wastewater with a mixed microalgae and bacteria culture. Biotechnol Reports 11:18–26

    Article  Google Scholar 

  • Ferrera I, Sánchez O (2016) Insights into microbial diversity in wastewater treatment systems: how far have we come? Biotechnol Adv 34:790–802

    Article  CAS  PubMed  Google Scholar 

  • Ferrero EM, de Godos I, Rodríguez EM, García-Encina PA, Muñoz R, Bécares E (2012) Molecular characterization of bacterial communities in algal-bacterial photobioreactors treating piggery wastewaters. Ecol Eng 40:121–130

    Article  Google Scholar 

  • Ferro L, Hu YOO, Gentili FG, Andersson AF, Kunk C (2020) DNA metabarcoding reveals microbial community dynamics in a microalgae-based municipal wastewater treatment open photobioreactor. Algal Res 51:102043

    Article  Google Scholar 

  • Grivalský T, Ranglová K, da CâmaraManoel JA, Lakatos GE, Lhotský R, Masojídek J (2019) Development of thin-layer cascades for microalgae cultivation: milestones (review). Folia Microbiol (Praha) 64:603–614

    Article  CAS  Google Scholar 

  • Hassan M, Essam T, Mira A, Megahed S (2019) Biomonitoring detoxification efficiency of an algal-bacterial microcosm system for treatment of coking wastewater: harmonization between Chlorella vulgaris microalgae and wastewater microbiome. Sci Total Environ 677:120–130

    Article  CAS  PubMed  Google Scholar 

  • He Q, Yang H, Wu L, Hu C (2015) Effect of light intensity on physiological changes, carbon allocation and neutral lipid accumulation in oleaginous microalgae. Bioresour Technol 191:219–228

    Article  CAS  PubMed  Google Scholar 

  • Hogle SL, Brahamsha B, Barbeau KA (2017) Direct heme uptake by phytoplankton-associated Roseobacter bacteria. mSystems 2:7–13

    Article  Google Scholar 

  • Jebali A, Acién FG, Rodriguez Barradas E, Olguín AJ, Sayadi S, Molina Grima E (2018) Pilot-scale outdoor production of Scenedesmus sp. in raceways using flue gases and centrate from anaerobic digestion as the sole culture medium. Bioresour Technol 262:1–8

    Article  CAS  PubMed  Google Scholar 

  • Jorquera O, Kiperstok A, Sales EA, Embiruçu M, Ghirardi ML (2010) Comparative energy life-cycle analyses of microalgal biomass production in open ponds and photobioreactors. Bioresour Technol 101:1406–1413

    Article  CAS  PubMed  Google Scholar 

  • Kim B-H, Choi J-E, Cho K, Zion K, Rishiram R, Doo-Gyung M, Hee-Sik K (2018) Influence of water depth on microalgal production, biomass harvest, and energy consumption in high rate algal pond using municipal wastewater. J Microbiol Biotechnol 28:630–637

    Article  CAS  PubMed  Google Scholar 

  • Lian J, Wijffels RH, Smidt H, Sipkema D (2018) The effect of the algal microbiome on industrial production of microalgae. Microb Biotechnol 11:806–818

    Article  PubMed  PubMed Central  Google Scholar 

  • Mantovani M, Marazzi F, Fornaroli R, Bellucci M, Ficara E, Mezzanotte V (2020) Outdoor pilot-scale raceway as a microalgae-bacteria sidestream treatment in a WWTP. Sci Total Environ 710:135583

    Article  CAS  PubMed  Google Scholar 

  • Masojídek J, Sergejevová M, Malapascua JR, Kopecký J (2015) Thin-layer systems for mass cultivation of microalgae: flat panels and sloping cascades. In: Prokop A, Bajpai R, Zappi M (eds) Algal Biorefineries. Springer Cham, pp 237–261

  • Matali X, Azam F (2004) Algicidal bacteria in the sea and their impact on algal blooms. J Eukaryot Microbiol 51:139–144

    Article  Google Scholar 

  • Mehrabadi A, Craggs R, Farid MM (2017) Wastewater treatment high rate algal pond biomass for bio-crude oil production. Bioresour Technol 224:255–264

    Article  CAS  PubMed  Google Scholar 

  • Mehrani MJ, Sobotka D, Kowal P, Ciesielski S, Makinia J (2020) The occurrence and role of Nitrospira in nitrogen removal systems. Bioresour Technol 303:122936

    Article  CAS  PubMed  Google Scholar 

  • del Morales-Amaral M, M, Gómez-Serrano C, Acién FG, Fernández-Sevilla JM, Molina-Grima E, (2015) Outdoor production of Scenedesmus sp. in thin-layer and raceway reactors using centrate from anaerobic digestion as the sole nutrient source. Algal Res 12:99–108

    Article  Google Scholar 

  • Morillas-España A, Lafarga T, Acién-Fernández FG, Gómez-Serrano C, González-López CV (2021) Annual production of microalgae in wastewater using pilot-scale thin-layer cascade photobioreactors. J Appl Phycol. https://doi.org/10.1007/S10811-021-02565-2

    Article  Google Scholar 

  • Morillas-España A, Lafarga T, Gómez-Serrano C, Acién-Fernández FG, González-López CV (2020) Year-long production of Scenedesmus almeriensis in pilot-scale raceway and thin-layer cascade photobioreactors. Algal Res 51:102069

    Article  Google Scholar 

  • Msanne J, Polle J, Starkenburg S (2020) An assessment of heterotrophy and mixotrophy in Scenedesmus and its utilization in wastewater treatment. Algal Res 48:101911

    Article  Google Scholar 

  • Muga HE, Mihelcic JR (2008) Sustainability of wastewater treatment technologies. J Environ Manage 88:437–447

    Article  CAS  PubMed  Google Scholar 

  • Nag Dasgupta C, Nayaka S, Toppo K, Singh AK, Deshpande U, Mohapatra A (2018) Draft genome sequence and detailed characterization of biofuel production by oleaginous microalga Scenedesmus quadricauda LWG002611. Biotechnol Biofuels 11:308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Novoveská L, Zapata AKM, Zabolotney JB, Atwood MC, Sunstrom ER (2016) Optimizing microalgae cultivation and wastewater treatment in large-scale offshore photobioreactors. Algal Res 18:86–94

    Article  Google Scholar 

  • Posadas E, García-Encina PA, Domínguez A, Díaz I, Becares E, Blanco S, Muñoz R (2014) Enclosed tubular and open algal–bacterial biofilm photobioreactors for carbon and nutrient removal from domestic wastewater. Ecol Eng 67:156–164

    Article  Google Scholar 

  • Posadas E, del Morales M, M, Gomez C, Acién FG, Muñoz R, (2015) Influence of pH and CO2 source on the performance of microalgae-based secondary domestic wastewater treatment in outdoors pilot raceways. Chem Eng J 265:239–248

    Article  CAS  Google Scholar 

  • Prosser JI (1990) Autotrophic nitrification in bacteria. In: Rose A, Tempest D (eds) Advances in Microbial Physiology. Academic Press, NY, pp 125–181

    Google Scholar 

  • Puglisi I, Barone V, Sidella S, Coppa M, Broccanello C, Gennari M, Baglieri A (2018) Biostimulant activity of humic-like substances from agro-industrial waste on Chlorella vulgaris and Scenedesmus quadricauda. Eur J Phycol 53:433–442

    Article  CAS  Google Scholar 

  • Puglisi I, La Bella E, Rovetto EI, Lo Piero AR, Baglieri A (2020) Biostimulant effect and biochemical response in lettuce seedlings treated with a Scenedesmus quadricauda extract. Plants 9:123

    Article  CAS  PubMed Central  Google Scholar 

  • Raeisossadati M, Vadiveloo A, Bahri PA, Parlevliet D, Moheimani NR (2019) Treating anaerobically digested piggery effluent (ADPE) using microalgae in thin layer reactor and raceway pond. J Appl Phycol 31:2311–2319

    Article  CAS  Google Scholar 

  • Rimoldi S, Terova G, Ascione C, Giannico R, Brambilla F (2018) Next generation sequencing for gut microbiome characterization in rainbow trout (Oncorhynchus mykiss) fed animal by-product meals as an alternative to fishmeal protein sources. PLoS ONE 13:e0193652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Risgaard-Petersen N, Nicolaisen MH, Revsbech NP, Lomstein BA (2004) Competition between ammonia-oxidizing bacteria and benthic microalgae. Appl Environ Microbiol 70:5528–5537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rossi S, Díez-Montero R, Rueda E, Castillo Cascino F, Parati K, García J, Ficara E (2020) Free ammonia inhibition in microalgae and cyanobacteria grown in wastewaters: photo-respirometric evaluation and modelling. Bioresour Technol 305:123046

    Article  CAS  PubMed  Google Scholar 

  • Sánchez-Zurano A, Ciardi M, Lafarga T, Fernández-Sevilla JM, Bermejo R, Molina-Grima E (2021) Role of microalgae in the recovery of nutrients from pig manure. Processes 9:203

    Article  CAS  Google Scholar 

  • Sánchez Zurano A, Garrido Cárdenas JA, Gómez Serrano C, Morales Amaral MM, Acién-Fernández FG, Fernández Sevilla JM, Molina Grima E (2020) Year-long assessment of a pilot-scale thin-layer reactor for microalgae wastewater treatment. Variation in the microalgae-bacteria consortium and the impact of environmental conditions. Algal Res 50:101983

    Article  Google Scholar 

  • Santabarbara S, Monteleone FV, Remelli W, Rizzo F, Menin B, Casazza AP (2019) Comparative excitation-emission dependence of the FV/FM ratio in model green algae and cyanobacterial strains. Physiol Plant 166:351–364

    Article  CAS  PubMed  Google Scholar 

  • Scarponi P, Volpi Ghirardini AM, Bravi M, Cavinato C (2021) Evaluation of Chlorella vulgaris and Scenedesmus obliquus growth on pretreated organic solid waste digestate. Waste Manag 119:235–241

    Article  CAS  PubMed  Google Scholar 

  • Siripong S, Rittmann BE (2007) Diversity study of nitrifying bacteria in full-scale municipal wastewater treatment plants. Water Res 41:1110–1120

    Article  CAS  PubMed  Google Scholar 

  • Sukačová K, Trtílek M, Rataj T (2015) Phosphorus removal using a microalgal biofilm in a new biofilm photobioreactor for tertiary wastewater treatment. Water Res 71:55–63

    Article  CAS  PubMed  Google Scholar 

  • Yang F, Xiang W, Li T, Long L (2018) Transcriptome analysis for phosphorus starvation-induced lipid accumulation in Scenedesmus sp. Sci Rep 8:16420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ye S, Gao L, Zhao J, An M, Wu H, Li M (2020) Simultaneous wastewater treatment and lipid production by Scenedesmus sp. HXY2. Bioresour Technol

  • Zou G, Liu Y, Zhang Q, Zhou T, Xiang S, Gu Z, Huang Q, Yan H, Zheng H, Wu X, Wang Y, Ruan R, Liu M (2020) Cultivation of Chlorella vulgaris in a light-receiving-plate (LRP)-enhanced raceway pond for ammonium and phosphorus removal from pretreated pig urine. Energies 13:1644

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors would like to thank the Bioinformatics Core Facility at PTP Science Park (Lodi, Italy) for their technical assistance and the Andalucian Institute of Agricultural and Fisheries Research and Training (IFAPA) in Almería, Spain.

Funding

This work forms part of the SABANA Project, funded by the European Union's Horizon 2020 Research and Innovation Programme (Grant # 727874) and the PURASOL project, funded by the Spanish Ministry of Economy and Industry (CTQ2017-84006-C3-3-R). T. Lafarga thanks the Spanish Ministry of Science, Innovation, and Universities (IJC2018-035287-I) and the BBVA Foundation for the Leonardo 2020 Grant for Researchers and Cultural Creators. A. Sanchez-Zurano is in receipt of a FPU grant awarded by the Spanish Ministry of Education (FPU16/05996).

Author information

Authors and Affiliations

Authors

Contributions

A. Sánchez-Zurano: investigation, formal analysis, writing—original draft; T. Lafarga: formal analysis, visualisation, writing—original draft; M.M. Morales-Amaral: investigation; C. Gómez-Serrano: investigation, supervision; J.M. Fernández-Sevilla: conceptualisation, supervision, writing—review and editing; F.G. Acién-Fernández: supervision, conceptualisation, writing—review and editing, funding acquisition; E. Molina-Grima: conceptualisation, supervision, writing—review and editing.

Corresponding author

Correspondence to Tomás Lafarga.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sánchez-Zurano, A., Lafarga, T., Morales-Amaral, M.d. et al. Wastewater treatment using Scenedesmus almeriensis: effect of operational conditions on the composition of the microalgae-bacteria consortia. J Appl Phycol 33, 3885–3897 (2021). https://doi.org/10.1007/s10811-021-02600-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-021-02600-2

Keywords

Navigation