Skip to main content
Log in

Nutrient removal from the centrate of anaerobic digestion of high ammonium industrial wastewater by a semi-continuous culture of Arthrospira sp. and Nostoc sp. PCC 7413

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

The feasibility of the semi-continuous cultivation of Arthrospira (Spirulina) sp. and Nostoc sp. PCC 7413, using the centrate from the anaerobic digestion of wastewater from a seafood canning industry as a nutrient source, was assessed. Semi-continuous cultures were carried out in aerated tubular culture units of 250 mL by replacing a 10–20% of the volume with the centrate every 2 days. Growth, ammonium, and nitrate removal were monitored, as well as phycobiliprotein and protein production by Arthrospira sp. and released exopolysaccharides production by Nostoc sp. PCC 7413. The ammonium removal efficiency by Arthrospira sp. was 84.9 ± 1.9% in a culture maintained with an ammonium concentration of 11.3 mM. Lower ammonium concentrations (4.9 mM) could be applied to Nostoc sp. PCC 7413, reaching similar relative removal efficiency (84.1%). Taking into account the high ammonium stripping that occurs at the high pH required in Arthrospira sp. cultures, results indicate a better nutrient removal by Nostoc sp., although Arthrospira sp. is more suitable for working at high ammonium concentrations. Since all the ammonium was removed during the first 24 h for both species, much lower residence time could be supported by the cultures. High concentrations of protein (2.5 ± 0.2 mg mL−1), phycobiliprotein (allophycocyanin, 84.3 ± 10.2 mg g−1; phycocyanin, 73.7 ± 7.7 mg g−1) were obtained by Arthrospira sp. cultures. A high concentration of released exopolysaccharides (962.7 ± 26.7 mg L−1) was also obtained for Nostoc sp. PCC 7413 when cultured in the anaerobic centrate. The results indicate the possibility of the use of filamentous cyanobacteria for the treatment of industrial effluents rich in ammonium, with different possibilities of valorization of the biomass produced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abeliovich A, Azov Y (1976) Toxicity of ammonia to algae in sewage oxidation ponds. Appl Environ Microbiol 31:801–806

    CAS  PubMed  PubMed Central  Google Scholar 

  • Abu Hajar, H (2016) Sustainable cultivation of microalgae using diluted anaerobic digestate for biofuels production. Electronic Thesis or Dissertation. Retrieved from https://etd.ohiolink.edu/

  • Acién FG, Fernández JM, Molina-Grima E (2013) Economics of microalgae biomass production. In: Pandey J, Lee DJ, Chisti Y, Soccol C (eds) Biofuels from algae. Elsevier, Amsterdam, pp 313–325

    Google Scholar 

  • Allen MM (1968) Simple conditions for growth of unicellular blue-green algae on plates. J Phycol 4:1–4

    CAS  PubMed  Google Scholar 

  • APHA AWWA WEF (2017) Standard method for the examination of water and wastewater, 23rd edn Washington, USA

    Google Scholar 

  • Arias DM, Uggetti E, García-Galán MJ, García J (2017) Cultivation and selection of cyanobacteria in a closed photobioreactor used for secondary effluent and digestate treatment. Sci Total Environ 1:157–167

    Google Scholar 

  • Arias DM, García J, Uggetti E (2020) Production of polymers by cyanobacteria grown in wastewater: current status, challenges and future perspectives. New Biotechnol 55:46–57

    CAS  Google Scholar 

  • Belkin S, Boussiba S (1991) High internal pH conveys ammonia resistance in Spirulina platensis. Bioresour Technol 38:167–169

    CAS  Google Scholar 

  • Bennett A, Bogorad L (1973) Complementary chromatic adaptation in a filamentous blue-green alga. J Cell Biol 58:419–435

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bezerra RP, Matsudo MC, Converti A, Sato S, de Carvalho JCM (2007) Influence of ammonium chloride feeding time and light intensity on the cultivation of Spirulina (Arthrospira) platensis. Biotechnol Bioeng 100:297–305

    Google Scholar 

  • Bjornsson WJ, Nicol RW, Dickinson KE, McGinn PJ (2013) Anaerobic digestate are useful nutrient sources for microalgae cultivation: functional coupling of energy and biomass production. J Appl Phycol 25:1523–1528

    CAS  Google Scholar 

  • Cai T, Park SY, Racharaks R, Li Y (2013a) Cultivation of Nannochloropsis salina using anaerobic digestion effluent as a nutrient source for biofuel production. Appl Energy 108:486–492

    CAS  Google Scholar 

  • Cai T, Ge X, Park SY, Li Y (2013b) Comparison of Synechocystis sp. PCC 6803 and Nannochloropsis salina for lipid production using artificial seawater and nutrients from anaerobic digestion effluent. Bioresour Technol 144:255–260

    CAS  PubMed  Google Scholar 

  • Cañizares-Villanueva RO, Domínguez AR, Cruz MS, Ríos-Leal E (1995) Chemical composition of cyanobacteria grown in diluted, aerated swine wastewater. Bioresour Technol 51:111–116

    Google Scholar 

  • Cepoi L, Dontu N, Şalaru V, Şalaru V (2016) Removal of organic pollutants from wastewater by cyanobacteria. In: Zinicovscaia I, Cepoi L (eds) Cyanobacteria for bioremediation of wastewater. Springer, Cham, pp 27–43

    Google Scholar 

  • Chaiklahan R, Chirasuwan N, Siangdung W, Paithoonrangsarid K, Bunnag B (2010) Cultivation of Spirulina platensis using pig wastewater in a semi-continuous process. J Microbiol Biotechnol 20:609–614

    CAS  PubMed  Google Scholar 

  • Chen M, Li J, Zhang L, Chang S, Liu C, Wang J, Li S (2014) Auto-flotation of heterocyst enables the efficient production of renewable energy in cyanobacteria. Sci Rep 4:1–9

    Google Scholar 

  • Cho CM, Fan Y, Li F, Hu GR (2016) Bioremediation of wastewater from edible oil refinery factory using oleaginous microalga Desmodesmus sp. S1. Int J Phytoremed 12:1195–1201

    Google Scholar 

  • Chowdhury P, Viraraghavan T, Srinivasan A (2010) Biological treatment processes for fish processing wastewater - a review. Bioresour Technol 101:439–449

    CAS  PubMed  Google Scholar 

  • Chuntapa B, Powtongsook S, Menasveta P (2003) Water quality control using Spirulina platensis in shrimp culture tanks. Aquaculture. 220:355–366

    CAS  Google Scholar 

  • Collet P, Lardon L, Hélias A, Bricout S, Lombaert-Valot I, Perrier B, Lépine O, Steyer JP, Bernard O (2014) Biodiesel from microalgae – life cycle assessment and recommendations for potential improvements. Renew Energy 71:525–533

    CAS  Google Scholar 

  • Contreras EM, Giannuzi L, Zaritzky NE (2000) Growth kinetics of the filamentous microorganism Sphaerotilus natans in a model system of a food industry wastewater. Water Res 34:4455–4463

    CAS  Google Scholar 

  • Craggs RJ, Lundquist TJ, Benemann JR (2013) Wastewater treatment and algal biofuel production. In: Borowitzka MA, Moheimani NR (eds) Algae for Biofuels and Energy. Springer, Dordrecht, pp 153–163

    Google Scholar 

  • Delrue F, Alaux E, Moudjaoui L, Gaignard C, Fleury G, Perilhou A, Richaud P, Petitjean M, Sassi JF (2017) Optimization of Arthrospira platensis (Spirulina) growth: from laboratory scale to pilot scale. Fermentation 3:1–14

    Google Scholar 

  • DuBois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    CAS  Google Scholar 

  • Franchino M, Comino E, Bona F, Riggio VA (2013) Growth of three microalgae strains and nutrient removal from an agro-zootechnical digestate. Chemosphere. 92:738–744

    CAS  PubMed  Google Scholar 

  • Gao F, Li C, Yang ZH, Zeng GM, Feng LJ, Liu JZ, Liu M, Cai HW (2016) Continuous microalgae cultivation in aquaculture wastewater by a membrane photobioreactor for biomass production and nutrients removal. Ecol Eng 92:55–61

    Google Scholar 

  • Gerardo ML, Van Den Henden S, Vervaeren H, Coward T, Skill SC (2015) Harvesting of microalgae within a biorefinery approach: a review of the developments and case studies from pilot-plants. Algal Res 11:248–262

    Google Scholar 

  • Guerrero L, Omil F, Méndez R, Lema JM (1999) Anaerobic hydrolysis and acidogenesis of wastewaters from food industries with high content of organic solids and protein. Water Res 33:3281–3290

    CAS  Google Scholar 

  • Habib MAB, Parvin M, Huntington TC, Hasan MR (2008) A review of culture, production and use of Spirulina as food for humans and feeds for domestic animal and fish. FAO Fisheries and Aquaculture Circular no. 1034. FAO, Rome

  • Hammed AM, Prajapati SK, Simsek S, Simsek H (2016) Growth regime and environmental remediation of microalgae. Algae. 31:189–204

    CAS  Google Scholar 

  • Herbert D, Phipps PJ, Strange RE (1971) Chemical analysis of microbial cells. In: Norris JR, Ribbons DW (eds) Methods in microbiology. Academic Press, London, pp 209–344

    Google Scholar 

  • Kamilya D, Sarkar S, Maiti TK, Bandyopadhyay S, Mal BC (2006) Growth and nutrient removal rates of Spirulina platensis and Nostoc muscorum in fish culture effluent: a laboratory-scale study. Aquac Res 37:1594–1597

    Google Scholar 

  • Komárek J, Anagnostidis K (2005) Süsswasserflora von Mitteleuropa. Cyanoprokaryota: 2. Teil/2nd part: Oscillatoriales, vol 19. Elsevier Spektrum, München

    Google Scholar 

  • Krug FJ, Ruzicka J, Hansen E (1979) Determination of ammonia in low concentrations with Nessler ́s reagent by flow injection analysis. Analyst. 104:47–54

    CAS  Google Scholar 

  • Lawrie AC, Codd GA, Stewart DP (1976) The incorporation of nitrogen into products of recent photosynthesis in Anabaena cylindrica Lemm. Arch Microbiol 107:15–24

    CAS  PubMed  Google Scholar 

  • Ledda C, Romero Villegas GI, Adani F, Acién Fernández FG, Molina Grima E (2015a) Utilization of centrate from wastewater treatment for the outdoor production of Nannochloropsis gaditana biomass at pilot-scale. Algal Res 12:17–25

    Google Scholar 

  • Ledda C, Idà A, Allemand D, Mariani P, Adani F (2015b) Production of wild Chlorella sp. cultivated in digested and membrane-pretreated swine manure derived from a full-scale operation plant. Algal Res 12:68–73

    Google Scholar 

  • Ledda C, Tamiazzo J, Borin M, Adani F (2016) A simplified process of swine slurry treatment by primary filtration and Haematococcus pluvialis culture to produce low cost astaxanthin. Ecol Eng 90:244–250

    Google Scholar 

  • Liu J, Pemberton B, Lewis J, Scales PJ, Martin GJO (2020) Wastewater treatment using filamentous algae – a review. Bioresour Technol 298:1–15

    Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  Google Scholar 

  • Markou G, Georgakakis D (2011) Cultivation of filamentous cyanobacteria (blue-green algae) in agro-industrial wastes and wastewater. A review. Appl Energy 88:3389–3401

    CAS  Google Scholar 

  • Markou G, Vandamme D, Muylaert K (2014) Ammonia inhibition on Arthrospira platensis in relation to the initial biomass density and pH. Bioresour Technol 166:259–365

    CAS  PubMed  Google Scholar 

  • Matamoros V, Gutiérrez R, Ferrer R, García J, Bayona JM (2015) Capability of microalgae-based wastewater treatment systems to remove emerging organic contaminant: a pilot-scale study. J Hazard Mater 288:34–42

    CAS  PubMed  Google Scholar 

  • Milhazes-Cunha H, Otero A (2017) Valorisation of aquaculture effluents with microalgae: the integrated multi-trophic aquaculture concept. Algal Res 24:416–424

    Google Scholar 

  • Nayak M, Karemore A, Sen R (2016) Performance evaluation of microalgae for concomitant wastewater bioremediation, CO2 biofixation and lipid biosynthesis for biodiesel application. Algal Res 16:216–223

    Google Scholar 

  • Norsker NH, Barbosa MJ, Vermuë MH, Wijffels RH (2011) Microalgal production – a close look at the economics. Biotechnol Adv 29:24–47

    CAS  PubMed  Google Scholar 

  • Noüe J, Bassères A (1989) Biotreatment of anaerobically digested swine manure with microalgae. Biol Wastes 29:17–31

    Google Scholar 

  • Olguín EJ, Hernández B, Araus A, Camacho R, González R, Ramírez ME, Galicia S, Mercado G (1994) Simultaneous high-biomass protein production and nutrient removal using Spirulina maxima in sea water supplemented with anaerobic effluents. World J Microbiol Biotechnol 10:576–578

    PubMed  Google Scholar 

  • Olguín EJ, Galicia S, Angulo-Guerrero O, Hernández E (2001) The effect of low flux and nitrogen deficiency on the chemical composition of Spirulina sp. (Arthrospira) grown on digested pig waste. Bioresour Technol 77:19–24

    PubMed  Google Scholar 

  • Olguín EJ, Galicia S, Mercado G, Pérez T (2003) Annual productivity of Spirulina (Arthrospira) and nutrient removal in a pig wastewater recycling process under tropical conditions. J Appl Phycol 15:249–257

    Google Scholar 

  • Otero A, Vincenzini M (2003) Extracellular polysaccharide synthesis by Nostoc strain as affected by N source and light intensity. J Biotechnol 102:143–152

    CAS  PubMed  Google Scholar 

  • Park JBK, Craggs RJ (2010) Wastewater treatment and algal production in high rate algal ponds with carbon dioxide addition. Water Sci Technol 61:633–639

    CAS  PubMed  Google Scholar 

  • Park JBK, Craggs RJ, Shilton AN (2011) Wastewater treatment high rate algal ponds for biofuel production. Bioresour Technol 102:35–42

    CAS  PubMed  Google Scholar 

  • Patnaik S, Sarkar R, Mitra A (2001) Alginate immobilization of Spirulina platensis for wastewater treatment. Indian J Exp Biol 39:824–826

    CAS  PubMed  Google Scholar 

  • Raeisossadati M, Vadiveloo A, Bahri PA, Parlevliet D, Moheimani NR (2019) Treating anaerobically digested piggery effluent (ADPE) using microalgae in thin layer reactor and raceway pond. J Appl Phycol 31:2311–2319

    CAS  Google Scholar 

  • Romero JM, Lara C (1987) Photosynthetic assimilation of NO3 by intact cells of the cyanobacterium Anacystis nidulans. Plant Physiol 83:208–212

    CAS  PubMed  PubMed Central  Google Scholar 

  • Romero-Villegas GI, Fiamengo M, Acién Fernández FG, Molina Grima E (2017) Outdoor production of microalgae biomass at pilot-scale in seawater using centrate as the nutrient source. Algal Res 25:538–548

    Google Scholar 

  • Sadik A (2015) Microalgal growth in anaerobic digestate. M.Sc. Thesis. Istanbul Technical University

  • Sankaran K, Premalatha M (2018) Nutrients uptake from anaerobically digested distillery wastewater by Spirulina sp. Under xenon lamp illumination. J Water Process Eng 25:295–300

    Google Scholar 

  • Singh J, Thakur IS (2015) Evaluation of cyanobacterial endolith Leptolyngbya sp. ISTCY101, for integrated wastewater treatment and biodiesel production: a toxicological perspective. Algal Res 11:294–303

    Google Scholar 

  • Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Review: commercial applications of microalgae. J Biosci Bioeng 2:87–96

    Google Scholar 

  • Talling JF, Driver D (1961) Some problems in the estimation of chlorophyll-a in phytoplankton. In: Doty MS (ed) Primary Productivity Measurement, Marine, and Freshwater. U.S. Atomic Energy Commission, Washington, D.C, pp 142–146

    Google Scholar 

  • Tredici MR, Rodolfi L, Biondi N, Bassi N, Sampietro G (2016) Techno-economic analysis of microalgal biomass productions in a 1-ha Green Wall panel (GWP®) plant. Algal Res 19:253–263

    Google Scholar 

  • Tuantet K, Temmink H, Zeeman G, Janssen M, Wijffels RH, Buisman CJN (2014) Nutrient removal and microalgal biomass production on urine in a short light-path. Water Res 55:162–174

    CAS  PubMed  Google Scholar 

  • Uggetti E, Sialve B, Latrille E, Steyer JP (2014) Anaerobic digestate as substrate for microalgae culture: the role of ammonium concentration on the microalgae productivity. Bioresour Technol 152:437–443

    CAS  PubMed  Google Scholar 

  • Wang L, Wang Y, Chen P, Ruan R (2010) Semi-continuous cultivation of Chlorella vulgaris for treating undigested and digested dairy manures. Appl Biochem Biotechnol 162:2324–2332

    CAS  PubMed  Google Scholar 

  • Wuang SC, Khin MC, Chua PQD, Luo YD (2016) Use of Spirulina biomass produced from treatment of aquaculture wastewater as agricultural fertilizers. Algal Res 15:59–64

    Google Scholar 

  • Yenigün O, Demirel B (2013) Ammonia inhibition in anaerobic digestion: a review. Process Biochem 48:901–911

    Google Scholar 

  • Zarrouk C (1966) Contribution à l’étude d’une cyanophycée. Influence de divers facteurs physiques et chimiques sur la croissance et photosynthèse de Spirulina maxima Geitler. Ph.D. Thesis, University of Paris

  • Zhu CJ, Lee YK (1997) Determination of biomass dry weight of marine microalgae. J Appl Phycol 9:189–194

    Google Scholar 

  • Zinicovscaia I (2016) Water Quality: A Major Global Problem. In: Zinicovscaia I, Cepoi L (eds) Cyanobacteria for bioremediation of wastewater. Springer, Cham, pp 5–16

    Google Scholar 

  • Zuliani L, Frison N, Jelic A, Fatone F, Bolzonella D, Ballottari M (2016) Microalgae cultivation on anaerobic digestate of municipal wastewater, sewage sludge and agro-waste. Int J Mol Sci 17:1–17

    Google Scholar 

Download references

Acknowledgments

Xavier Álvarez was supported by a scholarship from Secretaria de Educación Superior, Ciencia, Tecnología e Innovación (SENESCYT) of the National Government of the Republic of Ecuador. This work has been partially supported by a Grant from the Consellería de Industria, Xunta de Galicia (Programa de Consolidación y estructuración de Unidades de Investigación Competitivas, GPC2014/019). The digestates have been kindly provided by JB Ingenieros, Vigo (Pontevedra) Spain.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xavier Álvarez or Ana Otero.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Álvarez, X., Otero, A. Nutrient removal from the centrate of anaerobic digestion of high ammonium industrial wastewater by a semi-continuous culture of Arthrospira sp. and Nostoc sp. PCC 7413. J Appl Phycol 32, 2785–2794 (2020). https://doi.org/10.1007/s10811-020-02175-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-020-02175-4

Keywords

Navigation