Skip to main content
Log in

Nutraceutical assessment of Solieria filiformis and Gracilaria cornea (Rhodophyta) under light quality modulation in culture

  • 23rd INTERNATIONAL SEAWEED SYMPOSIUM, JEJU
  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Seaweeds can produce certain pigments under specific light, salinity, and nutrient conditions. These pigments have important biological activities, which have been cited in numerous published literature; thus, they have been considered of nutraceutical importance. Solieria filiformis and Gracilaria cornea (Rhodophyta) have been studied for their ability to produce pigments, polysaccharides, and other nutraceuticals with antioxidant activity. Our group currently cultivates these species under an environmentally friendly integrated multi-trophic aquaculture (IMTA) system. In the present study, the ability of these seaweeds to synthesize carotenoids and phycobiliproteins by light quality modulation in laboratory cultures was determined. The experimental design used light-emitting diodes (LEDs) for the evaluation of individual light quality effects (white, blue, green, and red) and a combination of white + blue light for the combined effect. Five replicates per treatment were implemented. Seaweeds were kept in 800-mL polyethylene culture containers with Provasoli-enriched seawater at 22 °C for 3 weeks. The cultures were irradiated between 100 and 110 μmol photons m−2 s−1 with a 12:12 light:dark cycle. Growth parameters, pigment content, C:N ratio, and antioxidant activity were determined. The growth rate increased significantly when seaweeds were subjected to the combination of white + blue light, whereas chlorophyll a synthesis was improved under the green light treatment. As for phycobiliproteins, blue and green light resulted in the highest synthesis of phycoerythrin in S. filiformis and G. cornea, respectively. The synthesis of carotenoids increased with exposure to white light in both species whereas the antioxidant activity increased with the white + blue combination in G. cornea and with white light in S. filiformis. Light quality can promote growth and synthesis of certain compounds in red macroalgae; understanding these variables would be an advantage to control their nutraceutical quality in culture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Andersson M, Schubert H, Pedersén M, Snoeijs P (2006) Different patterns of carotenoid composition and photosynthesis acclimation in two tropical red algae. Mar Biol 149:653–665

    CAS  Google Scholar 

  • Arnao MB, Cano A, Acosta M (2001) Analytical, nutritional and clinical methods section. The hydrophilic and lipophilic contribution to total antioxidant activity. Food Chem 73:239–244

    CAS  Google Scholar 

  • Bedoux G, Caamal-Fuentes E, Boulho R, Marty C, Bourgougnon N, Freile-Pelegrín Y, Robledo D (2017) Antiviral and cytotoxic activities of polysaccharides extracted from four tropical seaweed species. Nat Prod Commun 12:807–811

    CAS  Google Scholar 

  • Beer S, Levy I (1983) Effects of photon fluence rate and light spectrum composition on growth, photosynthesis and pigment relations in Gracilaria sp. J Phycol 19:516–522

    CAS  Google Scholar 

  • Bonomi Barufi J, Figueroa FL, Plastino EM (2015) Effects of light quality on reproduction, growth and pigment content of Gracilaria birdiae (Rhodophyta: Gracilariales). Sci Mar 79:1–10

    Google Scholar 

  • Brand-Williams W, Cuvelier ME, Berset C (1995) Use of a free radical method to evaluate antioxidant activity. LWT- Food Sci Technol 28:25–30

  • Caamal-Fuentes E, Robledo D, Freile-Pelegrín Y (2017) Physicochemical characterization and biological activities of sulfated polysaccharides from cultivated Solieria filiformis Rhodophyta. Nat Prod Commun 12:803–806

    CAS  Google Scholar 

  • Chew YL, Lim YY, Omar M, Khoo KS (2008) Antioxidant activity of three edible seaweeds from two areas in South East Asia. LWT - Food Sci Technol 41:1067–1072

    CAS  Google Scholar 

  • Collén J, Davison IR (1999) Stress tolerance and reactive oxygen metabolism in the intertidal red seaweeds Mastocarpus stellatus and Chondrus crispus. Plant Cell Environ 22:1143–1151

    Google Scholar 

  • Core Team R (2018) R: a language and environment for statistical computing, Austria

  • Coura CO, de Araújo IWF, Vanderlei ESO, Rodrigues JAG, Quinderé ALG, Fontes BP, de Queiroz INL, de Menezes DB, Bezerra MM, e Silva AAR, Chaves HV, Jorge RJB, Evangelista JSAM, Benevides NMB (2012) Antinociceptive and anti-inflammatory activities of sulphated polysaccharides from the red seaweed Gracilaria cornea. Basic Clin Pharmacol Toxicol 110:335–341

    CAS  PubMed  Google Scholar 

  • Dawes, CJ (1998) Selected methods for study of marine pants. In: Dawes CJ, Marine botany, 2nd edn. John Wiley & Sons Ltd, New York, p 480

  • Dawes CJ, Orduña-Rojas J, Robledo D (1999) Response of the tropical red seaweed Gracilaria cornea to temperature, salinity and irradiance. J Appl Phycol 10:419–425

    Google Scholar 

  • de Araújo IWF, Vanderlei EDSO, Rodrigues JAG, Coura CO, Quinderé ALG, Fontes BP, de Queiroz INL, Jorge RJB, Bezerra MM, e Silva AAR, Chaves HV, Monteiro HSA, de Paula RCM, Benevides NMB (2011) Effects of a sulfated polysaccharide isolated from the red seaweed Solieria filiformis on models of nociception and inflammation. Carbohydr Polym 86:1207–1215

    Google Scholar 

  • de Araújo IWF, Rodrigues JAG, Vanderlei EDSO, de Paula GA, Lima TDB, Benevides NMB (2012) Iota-carrageenans from Solieria filiformis (Rhodophyta) and their effects in the inflammation and coagulation. Acta Sci Technol 34:127–135

    Google Scholar 

  • De Keyser E, Dhooghe E, Christiaens A, Labeke MCV, Huylenbroeck JV (2019) LED light quality intensifies leaf pigmentation in ornamental pot plants. Sci Hortic (Amsterdam) 253:270–275

    Google Scholar 

  • Devi KP, Suganthy N, Kesika P, Pandian SK (2008) Bioprotective properties of seaweeds: in vitro evaluation of antioxidant activity and antimicrobial activity against food borne bacteria in relation to polyphenolic content. BMC Complement Altern Med 8:38

    PubMed  PubMed Central  Google Scholar 

  • Fayaz M, Namitha KK, Murthy KNC, Swamy MM, Sarada R, Khanam S, Subbarao PV, Ravishankar GA (2005) Chemical composition, iron bioavailability, and antioxidant activity of Kappaphycus alvarezii (Doty). J Agric Food Chem 53:792–797

    CAS  PubMed  Google Scholar 

  • Figueroa FL, Aguilera J, Niell FX (1995a) Red and blue light regulation of growth and photosynthetic metabolism in Porphyra umbilicalis (Bangiales, Rhodophyta). Eur J Phycol 30:11–18

    Google Scholar 

  • Figueroa FL, Aguilera J, Jiménez C, Vergara JJ, Robles MD, Niell FX (1995b) Growth, pigment synthesis and nitrogen assimilation in the red alga Porphyra sp (Bangiales, Rhodophyta) under blue and red light. Sci Mar 59:9–20

    Google Scholar 

  • Freile-Pelegrín Y (2000) Does storage time influence yield and agar properties in the tropical agarophyte Gracilaria cornea. J Appl Phycol 12:153–158

    Google Scholar 

  • Freile-Pelegrín Y, Robledo D (1997) Effects of season on the agar content and chemical characteristics of Gracilaria cornea from Yucatán, México. Bot Mar 40:285–290

    Google Scholar 

  • Freile-Pelegrín Y, Robledo D (2013) Bioactive phenolic compounds from algae. In: Hernández-Ledesma B, Herrero M (eds) Bioactive compounds from marine foods: plant and animal sources. John Wiley & Sons Ltd, Chichester, UK, pp 113–129

    Google Scholar 

  • Freile-Pelegrín Y, Robledo D, Pedersén M, Bruno E, Rönnqvist J (2002) Effect of dark and salinity treatment in the yield and quality of agar from Gracilaria cornea (Rhodophyceae). Cienc Mar 28:289–296

    Google Scholar 

  • Ganesan P, Kumar CS, Bhaskar N (2008) Antioxidant properties of methanol extract and its solvent fractions obtained from selected Indian red seaweeds. Bioresour Technol 99:2717–2723

    CAS  PubMed  Google Scholar 

  • Godínez-Ortega JL, Snoeijs P, Robledo D, Freile-Pelegrín Y, Pedersén M (2008) Growth and pigment composition in the red alga Halymenia floresii cultured under different light qualities. J Appl Phycol 20:253–260

    Google Scholar 

  • Hogewoning SW, Trouwborst G, Maljaars H, Poorter H, van Ieperen W, Harbinson J (2010) Blue light dose-responses of leaf photosynthesis, morphology, and chemical composition of Cucumis sativus grown under different combinations of red and blue light. J Exp Bot 61:3107–3117

    CAS  PubMed  PubMed Central  Google Scholar 

  • Holdt SL, Kraan S (2011) Bioactive compounds in seaweed: functional food applications and legislation. J Appl Phycol 23:543–597

    CAS  Google Scholar 

  • Jímenez-Escrig A, Jímenez-Jímenez I, Pulido R, Saura-Calixto F (2001) Antioxidant activity of fresh and processed edible seaweeds. J Sci Food Agric 81:530–534

    Google Scholar 

  • Kim JK, Mao Y, Kraemer G, Yarish C (2015) Growth and pigment content of Gracilaria tikvahiae McLachlan under fluorescent and LED lighting. Aquaculture 436:52–57

    CAS  Google Scholar 

  • Korbee N, Figueroa FL, Aguilera J (2005) Effect of light quality on the accumulation of photosynthetic pigments, proteins and mycosporine-like amino acids in the red alga Porphyra leucosticta (Bangiales, Rhodophyta). J Photochem Photobiol B 80:71–78

    CAS  PubMed  Google Scholar 

  • Kumar HD, Singh HN (1979) Rhodophyta. In: Kumar HD, Singh HN (eds) A textbook on algae. Macmillan, London, p 216

    Google Scholar 

  • Kumar KS, Ganesan K, Rao PVS (2008) Antioxidant potential of solvent extracts of Kappaphycus alvarezii (Doty) Doty - an edible seaweed. Food Chem 107:289–295

    CAS  Google Scholar 

  • Larkum AWD, Drew EA, Crossett RN (1967) The vertical distribution of attached marine algae in Malta. J Ecol 55:361–371

    Google Scholar 

  • Larkum AWD, Douglas SE, Raven JA (eds) (2003) Photosynthesis in algae. Springer, Dordrecht, p 479

    Google Scholar 

  • Le B, Shin JA, Kang MG, Sun S, Yang SH, Chung G (2018) Enhanced growth rate and ulvan yield of Ulva pertusa using light-emitting diodes (LEDs). Aquacult Int 26:937–946

    Google Scholar 

  • Leukart P, Luning K (1994) Minimum spectral light requirements and maximum light levels for long-term germling growth of several red algae from different water depths and a green alga. Eur J Phycol 29:103–112

    Google Scholar 

  • Littler DS, Littler MM (2000) Caribbean reef plants. OffShore Graphics, Inc., Washington, D. C., p 542

    Google Scholar 

  • Lopez-Figueroa F, Niell FX (1989) Red-light and blue-light photoreceptors controlling chlorophyll a synthesis in the red alga Porphyra umbilicalis and in the green alga Ulva rigida. Physiol Plant:391–397

  • Lüning K, Dring MJ (1985) Action spectra and spectral quantum yield of photosynthesis in marine macroalgae with thin and thick thalli. Mar Biol 87:119–129

    Google Scholar 

  • Morán-Santibañez K, Cruz-Suárez LE, Ricque-Marie D, Robledo D, Freile-Pelegrín Y, Peña-Hernández MA, Rodríguez-Padilla C, Trejo-Avila LM (2016) Synergistic effects of sulfated polysaccharides from Mexican seaweeds against measles virus. Biomed Res Int 2016:1–11

    Google Scholar 

  • Nguyen PT, Ruangchuay R, Lueangthuwapranit C (2017) Effect of shading colours on growth and pigment content of Gracilaria fisheri (Xia & Abbott) Abbott, Zhang & Xia (Gracilariales, Rhodophyta). Aquac Res 48:1119–1130

    CAS  Google Scholar 

  • Noctor G, Mhamdi A, Foyer CH (2016) Oxidative stress and antioxidative systems: recipes for successful data collection and interpretation. Plant Cell Environ 39:1140–1160

    CAS  PubMed  Google Scholar 

  • O’Carra P (1965) Purification and N-terminal analyses of algal biliproteins. Biochem J 94:171–174

    Google Scholar 

  • Orduña-Rojas J, Robledo D (2002) Studies on the tropical agarophyte Gracilaria cornea J. Agardh (Rhodophyta, Gracilariales) from Yucatán, Mexico. II. Biomass assessment and reproductive phenology. Bot Mar 45:459–464

    Google Scholar 

  • Orduña-Rojas J, Robledo D, Dawes CJ (2002) Studies on the tropical agarophyte Gracilaria cornea J. Agardh (Rhodophyta, Gracilariales) from Yucatán, Mexico. I. Seasonal physiological and biochemical responses. Bot Mar 45:453–458

    Google Scholar 

  • Ozgen M, Reese RN, Tulio AZ, Scheerens JC, Miller AR (2006) Modified 2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) method to measure antioxidant capacity of selected small fruits and comparison to ferric reducing antioxidant power (FRAP) and 2,2′-diphenyl-1- picrylhydrazyl (DPPH) methods. J Agric Food Chem 54:1151–1157

    CAS  PubMed  Google Scholar 

  • Parjikolaei BR, Kloster L, Bruhn A, Rasmussen MB, Fretté XC, Christensen KV (2013) Effect of light quality and nitrogen availability on the biomass production and pigment content of Palmaria palmata (Rhodophyta). Chem Eng Trans 32:967–972

    Google Scholar 

  • Parsons TR, Maita Y, Lalli CM (1984) Determination of chlorophylls and total carotenoids: spectrophotometric method. In: Parsons TR, Maita Y, Lalli CM (eds) A manual of chemical and biological methods for seawater analysis. Pergamon Press, Oxford, pp 101–112

    Google Scholar 

  • Peñuela A, Robledo D, Bourgougnon N, Bedoux G, Hernández-Núñez E, Freile-Pelegrín Y (2018) Environmentally friendly valorization of Solieria filiformis (Gigartinales, Rhodophyta) from IMTA using a biorefinery concept. Mar Drugs 16:487

    PubMed Central  Google Scholar 

  • Pereira L (2016) Edible seaweeds listed by geographic region. In: Edible seaweeds of the world. CRC Press, Boca Raton, p 453

  • Pliego-Cortés H, Caamal-Fuentes E, Montero-Muñoz J, Freile-Pelegrín Y, Robledo D (2017) Growth, biochemical and antioxidant content of Rhodymenia pseudopalmata (Rhodymeniales, Rhodophyta) cultivated under salinity and irradiance treatments. J Appl Phycol 29:2595–2603

    Google Scholar 

  • Provasoli L (1968) Media and prospects for the cultivation of marine algae. In: Watanabe A, Hattori A (eds) Cultures and collections of algae. Jpn Soc Pl Physiol, Hakone, pp 63–75

    Google Scholar 

  • Rice-Evans CA, Miller JN, Paganga G (1997) Antioxidant properties of phenolic compounds. Trends Plant Sci 2:152–159

    Google Scholar 

  • Sharakshane A (2017) White LED lighting for plants. bioRxiv 1–16.

  • Smith JHC, Benitez A (1955) Chlorophylls: analysis in plant material. In: Paech K, Tracey MV (eds) Modern methods of plant analysis. Springer, Berlin, pp 142–196

    Google Scholar 

  • Sousa WM, Silva RO, Bezerra FF, Bingana RD, Barros FCN, Costa LEC, Sombra VG, Soares PMG, Feitosa JPA, de Paula RCM, Souza MHLP, Barbosa ALR, Freitas ALP (2016) Sulfated polysaccharide fraction from marine algae Solieria filiformis: structural characterization, gastroprotective and antioxidant effects. Carbohydr Polym 152:140–148

    CAS  PubMed  Google Scholar 

  • Souza BWS, Cerqueira MA, Martins JT, Quintas MAC, Ferreira ACS, Teixeira JA, Vicente AA (2011) Antioxidant potential of two red seaweeds from the Brazilian coasts. J Agric Food Chem 59:5589–5594

    CAS  PubMed  Google Scholar 

  • Souza BWS, Cerqueira MA, Bourbon AI, Pinheiro AC, Martins JT, Teixeira JA, Coimbra MA, Vicente AA (2012) Chemical characterization and antioxidant activity of sulfated polysaccharide from the red seaweed Gracilaria birdiae. Food Hydrocoll 27:287–292

    CAS  Google Scholar 

  • Tsekos I, Niell FX, Aguilera J, López-Figueroa F, Delivopoulos SG (2002) Ultrastructure of the vegetative gametophytic cells of Porphyra leucosticta (Rhodophyta) grown in red, blue and green light. Phycol Res 50:251–264

    Google Scholar 

  • Wu H (2016) Effect of different light qualities on growth, pigment content, chlorophyll fluorescence, and antioxidant enzyme activity in the red alga Pyropia haitanensis (Bangiales, Rhodophyta). Biomed Res Int 2016:8

    Google Scholar 

  • Yong YS, Yong WTL, Anton A (2013) Analysis of formulae for determination of seaweed growth rate. J Appl Phycol 25:1831–1834

    Google Scholar 

  • Zakaria NA, Ibrahim D, Sulaiman SF, Supardy NA (2011) Assessment of antioxidant activity, total phenolic content and in-vitro toxicity of Malaysian red seaweed, Acanthophora spicifera. J Chem Pharm Res 3:182–191

    CAS  Google Scholar 

  • Zubia M, Robledo D, Freile-Pelegrín Y (2007) Antioxidant activities in tropical marine macroalgae from the Yucatan Peninsula, Mexico. J Appl Phycol 19:449–458

    Google Scholar 

Download references

Acknowledgments

The authors like to thank C. Chavez and E. Caamal for their help during biochemical analysis.

Funding

This study received funding from CONACYT PhD scholarship no. 615458 and PN-CONACYT 2015-01-118 project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Robledo.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zepeda, E., Freile-Pelegrín, Y. & Robledo, D. Nutraceutical assessment of Solieria filiformis and Gracilaria cornea (Rhodophyta) under light quality modulation in culture. J Appl Phycol 32, 2363–2373 (2020). https://doi.org/10.1007/s10811-019-02023-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-019-02023-0

Keywords

Navigation