Skip to main content
Log in

How growth conditions of Euglena gracilis cells influence cellular composition as evidenced by Fourier transform infrared spectroscopy and direct infusion high-resolution mass spectrometry

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

This study aims to assess the influence of growth and culture conditions of the Euglena gracilis protist on the cellular chemical composition. Fourier transform infrared spectroscopy (FT-IR) and direct infusion Orbitrap electrospray ionization mass spectrometry (ESI-MS) were used in tandem for confirmation of functional groups, and to decipher the normalized percentage abundances of compound classes, molecular species, and aromaticity and oxygenation within each growth condition. Abundances of molecular species and compound classes varied with growth and culture conditions. No major differences in the qualitative FT-IR-based screening of functional groups were found between growth conditions. This contrasts with ESI-MS-based results where polyphenols, carbohydrate, and condensed aromatic compounds were the most abundant in dark-grown conditions with glucose supplementation, revealing the differences in physiological states of the cell in different growth conditions. Dark-grown conditions promoted CHO molecular species while light-grown conditions favored CHON, CHOS, and CHONS molecular species. The dark-grown exponential E. gracilis cells grown in glucose-supplemented media showed the greatest normalized abundances of aromatics, carbohydrate, polyphenols, and protein, which are compound classes typically involved in metal binding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdulla HAN, Minor EC, Dias RF, Hatcher PG (2010) Changes in the compound classes of dissolved organic matter along an estuarine transect: a study using FTIR and 13C NMR. Geochim Cosmochim Acta 74:3815–3838

    Article  CAS  Google Scholar 

  • Akhter M, Dutta Majumdar R, Fortier-McGill B, Soong R, Liaghati-Mobarhan Y, Simpson M, Arhonditsis G, Schmidt S, Heumann H, Simpson AJ (2016) Identification of aquatically available carbon from algae through solution-state NMR of whole 13C-labelled cells. Anal Bioanal Chem 408:4357–4370

    Article  CAS  PubMed  Google Scholar 

  • Barsanti L, Vismara R, Passarelli V, Gualtieri P (2001) Paramylon (β-1,3-glucan) content in wild type and WZSL mutant of Euglena gracilis, effects of growth conditions. J Appl Phycol 13:59–65

    Article  CAS  Google Scholar 

  • Barupal DK, Kind T, Kothari SL, Lee do Y, Fiehn O (2010) Hydrocarbon phenotyping of algal species using pyrolysis-gas chromatography mass spectrometry. BMC Biotechnol 10:40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bassi D, Menossi M, Mattiello L (2018) Nitrogen supply influences photosynthesis establishment along the sugarcane leaf. Sci Rep 8:2327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Becker EW (2007) Micro-algae as a source of protein. Biotechnol Adv 25:207–210

    CAS  PubMed  Google Scholar 

  • Blake S, Walker SH, Muddiman DC, Hinks D, Beck KR (2011) Spectral accuracy and sulfur counting capabilities of the LTQ-FT-ICR and the LTQ-Orbitrap XL for small molecule analysis. J Am Soc Mass Spectrom 22:2269–2275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brady JM, Tobin JM, Roux JC (1999) Continuous fixed bed biosorption of Cu2+ ions; application of a simple two parameter mathematical model. J Chem Technol Biotechnol 74:71–77

    Article  CAS  Google Scholar 

  • Brown RD, Haselkorn R (1971) Chloroplast RNA populations in dark-grown, light-grown, and greening Euglena gracilis. PNAS 68:2536–2539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chojnacka K, Chojnacki A, Gorecka H (2005) Biosorption of Cr3+, Cd2+ and Cu2+ ions by blue–green algae Spirulina sp.: kinetics, equilibrium and the mechanism of the process. Chemosphere 59:75–84

    Article  CAS  PubMed  Google Scholar 

  • Constantopoulos G, Bloch K (1967) Effect of light intensity on the lipid composition of Euglena gracilis. J Biol Chem 242:3538–3542

    CAS  Google Scholar 

  • D’Andrilli J, Cooper WT, Foreman CM, Marshall AG (2015) An ultrahigh-resolution mass spectrometry index to estimate natural organic matter lability. Rapid Commun Mass Spectrom 29:2385–2401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Danilov RA, Ekelund NG (2001) Applicability of growth rate, cell shape, and motility of Euglena gracilis as physiological parameters for bioassessment at lower concentrations of toxic substances: an experimental approach. Environ Toxicol 16:78–83

    Article  CAS  PubMed  Google Scholar 

  • Daughney CJ, Fowle DA, Fortin D (2001) The effect of growth phase on proton and metal adsorption by Bacillus subtilis. Geochim Cosmochim Acta 65:1025–1035

    Article  CAS  Google Scholar 

  • Dupont CL, Ahner BA (2005) Effects of copper, cadmium, and zinc on the production and exudation of thiols by Emiliania huxleyi. Limnol Oceanogr 50:508–515

    Article  CAS  Google Scholar 

  • Fagerer SR, Schmid T, Ibanez AJ, Pabst M, Steinhoff R, Jefimovs K, Urban PL, Zenobi R (2013) Analysis of single algal cells by combining mass spectrometry with Raman and fluorescence mapping. Analyst 138:6732–6736

    Article  CAS  PubMed  Google Scholar 

  • Fogg GE (1957) Relationships between metabolism and growth in plankton algae. Microbiol 16:294–297

    CAS  Google Scholar 

  • Fourest E, Roux JC (1992) Heavy metal biosorption by fungal mycelial by-products: mechanisms and influence of pH. Appl Microbiol Biotechnol 37:399–403

    Article  CAS  Google Scholar 

  • Fourest E, Volesky B (1997) Alginate properties and heavy metal biosorption by marine algae. Appl Biochem Biotechnol 67:215–226

    Article  CAS  Google Scholar 

  • Georgianna DR, Mayfield SP (2012) Exploiting diversity and synthetic biology for the production of algal biofuels. Nature 488:329–335

    Article  CAS  PubMed  Google Scholar 

  • Grimm P, Risse JM, Cholewa D, Müller JM, Beshay U, Friehs K, Flaschel E (2015) Applicability of Euglena gracilis for biorefineries demonstrated by the production of α-tocopherol and paramylon followed by anaerobic digestion. J Biotechnol 215:72–79

    Article  CAS  PubMed  Google Scholar 

  • Gross JA, Wolken JJ (1960) Two c-type cytochromes from light- and dark-grown Euglena. Science 132:357–358

    Article  CAS  PubMed  Google Scholar 

  • Hammer Ø, Harper DA, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4:9

    Google Scholar 

  • Hawkes JA, Dittmar T, Patriarca C, Tranvik L, Bergquist J (2016) Evaluation of the Orbitrap mass spectrometer for the molecular fingerprinting analysis of natural dissolved organic matter. Anal Chem 88:7698–7704

    Article  CAS  PubMed  Google Scholar 

  • Helms JR, Stubbins A, Ritchie JD, Minor EC, Kieber DJ, Mopper K (2008) Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter. Limnol Oceanogr 53:955–969. https://doi.org/10.1029/2009JG000938

  • Hernes PJ, Bergamaschi BA, Eckard RS, Spencer RGM (2009) Fluorescence-based proxies for lignin in freshwater dissolved organic matter. J Geophys Res 114. https://doi.org/10.1029/2009JG000938

  • Hoffmeister M, van der Klei A, Rotte C, van Grinsven KW, van Hellemond JJ, Henze K, Tielens AG, Martin W (2004) Euglena gracilis rhodoquinone:ubiquinone ratio and mitochondrial proteome differs under aerobic and anaerobic conditions. J Biol Chem 279:22422–22429

    Article  CAS  PubMed  Google Scholar 

  • Ileri R, Mavituna F, Parkinson M, Turker M (1990) Repeated use of immobilized dead Rhizopus arrhizus for the removal of heavy metal contaminants from wastewater. Proceedings APBioChEC’90, 564-567

  • Jones JJ, Stump MJ, Fleming RC, Lay JO, Wilkins CL (2004) Strategies and data analysis techniques for lipid and phospholipid chemistry elucidation by intact cell MALDI-FTMS. J Am Soc Mass Spectrom 15:1665–1674

    Article  CAS  PubMed  Google Scholar 

  • Jones J, Manning S, Montoya M, Keller K, Poenie M (2012) Extraction of algal lipids and their analysis by HPLC and mass spectrometry. J Am Oil Chem Soc 89:1371–1381

    CAS  Google Scholar 

  • Kamiya A, Kowallik W (1987) Photoinhibition of glucose uptake in Chlorella. Plant Cell Physiol 28:611–619

    CAS  Google Scholar 

  • Kim S, Kramer RW, Hatcher PG (2003) Graphical method for analysis of ultrahigh-resolution broadband mass spectra of natural organic matter, the van Krevelen diagram. Anal Chem 75:5336–5344

    Article  CAS  PubMed  Google Scholar 

  • Kiss JZ, Vasconcelos AC, Triemer RE (1987) Structure of the euglenoid storage carbohydrate, paramylon. Am J Bot 74:877–882

    Article  CAS  Google Scholar 

  • Koch BP, Dittmar T (2006) From mass to structure: an aromaticity index for high-resolution mass data of natural organic matter. Rapid Comm Mass Spec 20:926–932

    Article  CAS  Google Scholar 

  • Kujawinski EB, Longnecker K, Blough NV, Del Vecchio R, Finlay L, Kitner JB, Giovannoni SJ (2009) Identification of possible source markers in marine dissolved organic matter using ultrahigh resolution mass spectrometry. Geochim Cosmochim Acta 73:4384–4439

    Article  CAS  Google Scholar 

  • Ledford HK, Niyogi KK (2005) Singlet oxygen and phot-oxidative stress management in plants and algae. Plant Cell Environ 28:1037–1045

    Article  CAS  Google Scholar 

  • Lee YJ, Leverence RC, Smith EA, Valenstein JS, Kandel K, Trewyn BG (2013) High-throughput analysis of algal crude oils using high resolution mass spectrometry. Lipids 48:297–305

    Article  CAS  PubMed  Google Scholar 

  • Link H, Fuhrer T, Gerosa L, Zamboni N, Sauer U (2015) Real-time metabolome profiling of the metabolic switch between starvation and growth. Nat Methods 12:1091

    Article  CAS  PubMed  Google Scholar 

  • Lohr M, Schwender J, Polle JE (2012) Isoprenoid biosynthesis in eukaryotic phototrophs: a spotlight on algae. Plant Sci 185–186:9–22

    Article  CAS  PubMed  Google Scholar 

  • Lu Q, Zhou W, Min M, Ma X, Chandra C, Doan YT, Ma Y, Zheng H, Cheng S, Griffith R, Chen P (2015) Growing Chlorella sp. on meat processing wastewater for nutrient removal and biomass production. Bioresour Technol 198:189–197. https://doi.org/10.3389/fmars.2016.00085

  • Mahapatra DM, Chanakya HN, Ramachandra TV (2013) Euglena sp. as a suitable source of lipids for potential use as biofuel and sustainable wastewater treatment. J Appl Phycol 25:855–865

    Article  CAS  Google Scholar 

  • Mangal V, Stock NL, Guéguen C (2016) Molecular characterization of phytoplankton dissolved organic matter (DOM) and sulfur components using high resolution Orbitrap mass spectrometry. Anal Bioanal Chem 408:1891–1900

    Article  CAS  PubMed  Google Scholar 

  • Mangal V, Phung T, Nguyen TQ, Gueguen C (2018) Molecular characterization of mercury binding ligands released by freshwater algae grown at three photoperiods. Front Environ Sci 6:155

    Article  Google Scholar 

  • Matsuda F, Hayashi M, Kondo A (2011) Comparative profiling analysis of central metabolites in Euglena gracilis under various cultivation conditions. Biosci Biotechnol Biochem 75:2253–2256

    Article  CAS  PubMed  Google Scholar 

  • Mendoza-Cózatl D, Loza-Tavera H, Hernández-Navarro A, Moreno-Sánchez R (2005) Sulfur assimilation and glutathione metabolism under cadmium stress in yeast, protists and plants. FEMS Microbiol Rev 29:653–671

    Article  CAS  PubMed  Google Scholar 

  • Minor EC, Swenson MM, Mattson BM, Oyler AR (2014) Structural characterization of dissolved organic matter: a review of current techniques for isolation and analysis. Environ Sci Process Impacts 16:2064–2079

    Article  PubMed  Google Scholar 

  • Minor EC, Li H, Oyler AR, Swenson MM, Mattson BM (2015) Reply to the Comment on “Structural characterization of dissolved organic matter: a review of current techniques for isolation and analysis” by EC Minor, MM Swenson, BM Mattson, and AR Oyler, Environ. Sci.: Processes Impacts, 2014, 16, 2064. Environmental Sci: Process Impacts 17:97–498

    Google Scholar 

  • Minqin R, Xiao C, Yi Z, Hao S, Qingguang R, Yong L, Frank W (2013) Sub-100-nm STIM imaging and PIXE quantification of rare earth elements in algae cells. X Ray Spectrom 42:237–241

    Article  CAS  Google Scholar 

  • Miyatake K, Minamigawa M, Nakano Y, Kitaoka S (1985) Effects of culture conditions on polyunsaturated fatty acids composition in Euglena gracilis. Nihon Eiyo Shokuryo Gakkai Shi 38:117–122

    Article  CAS  Google Scholar 

  • Monfils AK, Triemer RE, Bellairs EF (2011) Characterization of paramylon morphological diversity in photosynthetic euglenoids (Euglenales, Euglenophyta). Phycologia 50:156–169

    Article  Google Scholar 

  • Morales-Sánchez D, Kyndt J, Ogden K, Martinez A (2016) Toward an understanding of lipid and starch accumulation in microalgae: a proteomic study of Neochloris oleoabundans cultivated under N-limited heterotrophic conditions. Algal Res 20:22–34

    Article  Google Scholar 

  • Moreno-Sánchez R, Rodríguez-Enríquez S, Jasso-Chávez R, Saavedra E, García-García JD (2017) Biochemistry and physiology of heavy metal resistance and accumulation in Euglena. In: Schwartzbach SD, Shigeoka S (eds) Euglena: Biochemistry. Cell and Molecular Biology. Springer, Cham, pp 91–121

    Chapter  Google Scholar 

  • Nair K, Netrawali M (1979) Sensitivity of light-grown and dark-grown Euglena cells to gamma-irradiation. Int J Radiat Biol Relat Stud Phys Chem Med 36:223–231

    Article  CAS  PubMed  Google Scholar 

  • Nestle N (2002) NMR studies on heavy metal immobilization in biosorbents and mineral matrices. Rev Environ Sci Biotechnol 1:215–225

    Article  CAS  Google Scholar 

  • Nicolas P, Freyssinet G, Nigon V (1980) Effect of light on glucose utilization by Euglena gracilis. Plant Physiol 65:631–634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Neill E, Trick M, Hill L, Rejzek M, Dusi R, Hamilton C, Zimba P, Henrissat B, Field R (2015) The transcriptome of Euglena gracilis reveals unexpected metabolic capabilities for carbohydrate and natural product biochemistry. Mol BioSyst 11:2808–2820

    Article  CAS  PubMed  Google Scholar 

  • Obando C, Linossier I, Kervarec N, Zubia M, Turquet J, Fay F, Rehel K (2016) Rapid identification of osmolytes in tropical microalgae and cyanobacteria by 1H HR-MAS NMR spectroscopy. Talanta 153:372–380

    Article  CAS  Google Scholar 

  • Ogbonna J, Ichige E, Tanaka H (2002) Interactions between photoautotrophic and heterotrophic metabolism in photoheterotrophic cultures of Euglena gracilis. Appl Microbiol Biotechnol 58:532–538

    Article  CAS  PubMed  Google Scholar 

  • Ohno T, Ohno P (2013) Influence of heteroatom pre-selection on the molecular formula assignment of soil organic matter components determined by ultrahigh resolution mass spectrometry. Anal Bioanal Chem 405:3299–3306

    Article  CAS  PubMed  Google Scholar 

  • Olaveson M, Nalewajko C (2000) Effects of acidity on the growth of two Euglena species. Hydrobiologia 433:39–56

    Article  CAS  Google Scholar 

  • Opsahl S, Benner R (1998) Photochemical reactivity of dissolved lignin in river and ocean waters. Limnol Oceanogr 43:1297–1304

    Article  CAS  Google Scholar 

  • Osafune T, Schiff JA (1980) Events surrounding the early development of Euglena chloroplasts. Light-induced changes in a proplastid remnant in mutant W3BUL. J Ultrastruct Res 73:64–76

    Article  CAS  PubMed  Google Scholar 

  • Rezić T, Filipović J, Šantek B (2013) Photo-mixotrophic cultivation of algae Euglena gracilis for lipid production. Agric Conspec Sci 78:65–69

    Google Scholar 

  • Rodriguez-Zavala JS, Ortiz-Cruz MA, Mendoza-Hernandez G, Moreno-Sanchez R (2010) Increased synthesis of alpha-tocopherol, paramylon and tyrosine by Euglena gracilis under conditions of high biomass production. J Appl Microbiol 109:2160–2172

    Article  CAS  PubMed  Google Scholar 

  • Šantek B, Friehs K, Lotz M, Flaschel E (2012) Production of paramylon, a β-1,3 glucan, by heterotrophic growth of Euglena gracilis on potato liquor in fed-batch and repeated-batch mode of cultivation. Eng Life Sci 12:89–94

    Article  CAS  Google Scholar 

  • Sarpal A, Teixeira C, Silva P, da Costa MT, da Silva J, da Cunha V, Daroda R (2016) NMR techniques for determination of lipid content in microalgal biomass and their use in monitoring the cultivation with biodiesel potential. Appl Microbiol Biotechnol 100:2471–2485

    Article  CAS  PubMed  Google Scholar 

  • Schwartzbach, SD (2017) Photo and nutritional regulation of Euglena organelle development. In: Schwartzbach SD, Shigeoka S (eds) Euglena: biochemistry, cell and molecular biology. Springer, Cham. pp. 159–182

  • Schwarzhans J, Cholewa D, Grimm P, Beshay U, Risse J, Friehs K, Flaschel E (2015) Dependency of the fatty acid composition of Euglena gracilis on growth phase and culture conditions. J Appl Phycol 27:1389–1399

    Article  CAS  Google Scholar 

  • Siegenthaler PA, Murata N (2006) Lipids in photosynthesis: structure, function and genetics (Vol. 6). Kluwer, Dordrecht

    Google Scholar 

  • Sobek JM, Talburt DE (1968) Effects of the rare earth cerium on Escherichia coli. J Bacteriol 95:47–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spencer R, Stubbins A, Hernes P, Baker A, Mopper K, Aufdenkampe A, Dyda R, Mwamba V, Mangangu A, Wabakanghanzi J, Six J (2009) Photochemical degradation of dissolved organic matter and dissolved lignin phenols from the Congo River. J Geophys Res 114. https://doi.org/10.1029/2009JG000968

  • Thieme L, Graeber D, Hofmann D, Bischoff S, Schwarz MT, Steffen B, Meyer UN, Kaupenjohann M, Wilcke W, Michalzik B, Siemens J (2019) Dissolved organic matter characteristics of deciduous and coniferous forests with variable management: different at the source, aligned in the soil. Biogeosciences 16:1411–1432

    Article  CAS  Google Scholar 

  • Tsezos M, Volesky B (1981) Biosorption of uranium and thorium. Biotechnol Bioeng 23:583–604

    Article  CAS  Google Scholar 

  • Urban PL, Schmid T, Amantonico A, Zenobi R (2011) Multidimensional analysis of single algal cells by integrating microspectroscopy with mass spectrometry. Anal Chem 83:1843–1849

    Article  CAS  PubMed  Google Scholar 

  • Vaidyanathan S, Rowland JJ, Kell DB, Goodacre R (2001) Discrimination of aerobic endospore-forming bacteria via electrospray-ionization mass spectrometry of whole cell suspensions. Anal Chem 73:4134–4144

    Article  CAS  PubMed  Google Scholar 

  • van Krevelen DW (1950) Graphical-statistical method for the study of structure and reaction processes of coal. Fuel 29:269–284

    Google Scholar 

  • Vello V, Umashankar S, Phang SM, Chu WL, Lim PE, Majid NA, Liew KE, Swarup S, Chew FT (2018) Metabolomic profiles of tropical Chlorella and Parachlorella species in response to physiological changes during exponential and stationary growth phase. Algal Res 35:61–75

    Article  Google Scholar 

  • Wang S, Hu Y, Wang Q, Xu S, Lin X, Ji H, Zhang Z (2016) TG–FTIR–MS analysis of the pyrolysis of blended seaweed and rice husk. J Therm Anal Calorim 126:1689–1702

    Article  CAS  Google Scholar 

  • Wang Y, Seppänen-Laakso T, Rischer H, Wiebe MG (2018) Euglena gracilis growth and cell composition under different temperature, light and trophic conditions. PLoS One 13:e0195329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winters C, Guéguen C, Noble A (2017) Equilibrium and kinetic studies of Cu(II) and Ni(II) sorption on living Euglena gracilis. J Appl Phycol 29:1391–1398

    Article  CAS  Google Scholar 

  • Wu Z, Rodgers R, Marshall A (2004) Two-and three-dimensional van Krevelen diagrams: a graphical analysis complementary to the Kendrick mass plot for sorting elemental compositions of complex organic mixtures based on ultrahigh-resolution broadband Fourier transform ion cyclotron resonance mass measurements. Anal. Chem 76:2511–2516

    Article  CAS  PubMed  Google Scholar 

  • Zhang D, Ran C, Yang Y, Ran Y (2013) Biosorption of phenanthrene by pure algae and field-collected planktons and their fractions. Chemosphere 93:61–68

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Wang J, Liu J, Han J, Xiong S, Yong W, Zhao Z (2016) Combination of ESI and MALDI mass spectrometry for qualitative, semi-quantitative and in situ analysis of gangliosides in brain. Sci Rep 6:25289

Download references

Acknowledgments

We wish to acknowledge Philip Siambi (Noblegen) for guidance in cell culture and growth techniques, Dr. Jean-François Koprivnjak for assistance with lyophilizing cells, and Dr. Naomi L. Stock (Trent Water Quality Centre) for technical guidance on the mass spectrometer. The Editor and two anonymous reviewers are acknowledged for their helpful comments and suggestions that helped improve the quality of the manuscript.

Funding

This study received financial support from the Natural Sciences and Engineering Research Council (College and Community Innovation Program) and the Canada Foundation for Innovation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Céline Guéguen.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Figure S1

Growth curves of Euglena gracilis cells grown in (A) dark and (B) light conditions. The values were the average of duplicate measurements. Samples were collected at the exponential and stationary phases of growth. The dotted line represents the glucose supplementation culture (PPTX 44 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lewis, A., Guéguen, C. How growth conditions of Euglena gracilis cells influence cellular composition as evidenced by Fourier transform infrared spectroscopy and direct infusion high-resolution mass spectrometry. J Appl Phycol 32, 153–163 (2020). https://doi.org/10.1007/s10811-019-01929-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-019-01929-z

Keywords

Navigation