Skip to main content
Log in

Algicidal potential of cultivable bacteria from pelagic waters against the toxic dinoflagellate Pyrodinium bahamense (Dinophyceae)

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Associated and algicidal bacteria play roles in the succession and decline of phytoplankton blooms, including those of harmful algal bloom (HAB)-forming species. Limited studies on HAB-associated bacterial ecology have resulted in our incomplete understanding of HABs dynamics. Diverse phytoplankton-bacterial interactions have also led to studies on their potential as biocontrol tools for HABs mitigation. Here, we tested 48 cultivable pelagic bacteria from three HAB-affected areas in the Philippines (Bolinao, Sorsogon, and Matarinao) against non-axenic cultures of the toxic, thecate dinoflagellate Pyrodinium bahamense. Co-incubation with live cultures of these isolates exhibited varying levels of algicidal activities suggesting that it may not be a phylogenetically conserved property. Furthermore, majority of the isolates elicited activity against the thecate test species P. bahamense, which was not present in the area where the bacteria were isolated, implying non-specificity of action. Exposure to bacterial cells resulted in Pyrodinium pellicle cyst formation. Despite this, however, cell lysis and decline in total cell abundance were still observed, indicating strong algicidal potency of the isolates. In depth understanding of the interplay between environmental factors and algicidal bacteria-microalgal interactions may provide significant insights on the management of HABs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    CAS  PubMed  Google Scholar 

  • Anderson DM (1989) Toxic algal blooms and red tides: a global perspective. In: Okaichi T, Anderson DM, Nemoto T (eds) Red tides: biology environmental science and toxicology. Elsevier, New York, pp 11–16

    Google Scholar 

  • Anderson DM (2007) The ecology and oceanography of harmful algal blooms: multidisciplinary approaches to research and management. IOC Technical Series 74, UNESCO, IOC/2007/TS/74, 27 pp. http://hab.ioc-unesco.org/index.php?option=com_oe&task=viewDocumentRecord&docID=3450. Accessed 07 July 2018

  • Anderson DM, Kulis DM, Binder BJ (1984) Sexuality and cyst formation in the dinoflagellate Gonyaulax tamarensis: cyst yield in batch cultures. J Phycol 20:418–425

    Google Scholar 

  • Azanza RV (1997) Contributions to the understanding of the bloom dynamics of Pyrodinium bahamense var. compressum: a toxic red tide causative organism. Sci Diliman 9:1–6

    Google Scholar 

  • Azanza RV (2013) HAB resting stage dynamics, physiology and life cycles, with a focus on small-scale coastal systems. In: Roy S, Pospelova V, Montresor M, Cembella A (eds) 2013 GEOHAB Global Ecology and Oceanography of Harmful Algal Blooms, GEOHAB Core Research Project: HABs in Fjords and coastal embayments. Second Open Science Meeting. Progress in interpreting life history and growth dynamics of harmful algal blooms in Fjords and coastal environments. IOC and SCOR, Paris, France and Newark, Delaware USA, pp 20–23

  • Azanza RV (2017) When the blue sea turns red, the story of harmful algal blooms in the Philippines. The Marine Science Institute, University of the Philippines Diliman, Quezon City, pp 22–26

    Google Scholar 

  • Azanza RV, Benico GA (2013) Toxic Alexandrium blooms in fish farming sites in Bolinao, Pangasinan. J Environ Sci Manag Special Issue 1-2013:44–49

    Google Scholar 

  • Azanza RV, Larsen J (1997) Variation in nutrient concentration: effects on Pyrodinium cells in culture (Abs). 8th International Conference on Harmful Algae, Vigo, Spain As cited in Onda DFL, Lluisma AO, Azanza RV (2014) Development, morphological characteristics and viability of temporary cysts of Pyrodinium bahamense var compressum (Dinophyceae) in vitro. Eur J Phycol 3:265–275

  • Azanza RV, Fukuyo Y, Yap LG, Takayama H (2005) Prorocentrum minimum bloom and its possible link to a massive fish kill in Bolinao, Pangasinan, Northern Philippines. Harmful Algae 4:519–524

    Google Scholar 

  • Azanza RV, Vargas VMD, Fukami K, Shashank K, Onda DFL, Azanza MPV (2013) Culturable algalytic bacteria isolated from seaweeds in the Philippines and Japan. J Environ Sci Manag Special Issue 1:1–10

    Google Scholar 

  • Azanza-Corrales R, Hall S (1993) Isolation and culture of Pyrodinium bahamense var. compressum from the Philippines. In: Smayda TJ, Shimizu Y (eds) Toxic phytoplankton blooms in the sea. Elsevier, Amsterdam, pp 725–730

    Google Scholar 

  • Bajarias FF, Relox J Jr, Fukuyo Y (2006) PSP in the Philippines: Three decades of monitoring a disaster. Coast Mar Sci 30:104-106

  • Barak-Gavish N, Frada MJ, Ku C, Lee PA, DiTuillio GR, Malitsky S, Aharoni A, Green SJ, Rotkopf R, Kartvelishvily E, Sheyn U, Schatz D, Vardi A (2018) Bacterial virulence against an ocean-blooming phytoplankter is mediated by algal DMSP. Sci Adv 4:eaau5761

    Google Scholar 

  • Boesch DF, Anderson DM, Horner RA, Shumway SE, Tester PA, Whitledge TE (1996) Harmful algal blooms in coastal waters: options for prevention, control and mitigation. NOAA Coastal Ocean Program Decision Analysis Series No 10. NOAA Coastal Ocean Office, Silver Spring 46 pp + 6

    Google Scholar 

  • Buchan A, Gonzalez JM, Moran MA (2005) Overview of the marine Roseobacter lineage. Appl Environ Microbiol 71:5665–5677

    CAS  PubMed  PubMed Central  Google Scholar 

  • Capella-Gutierrez S, Silla-Martinez JM, Gabaldon T (2009) trimAL: a tool for automated trimming in large-scale phylogenetic analyses. Bioinformatics 25:1972–1973

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chambouvet A, Morin P, Marie D, Guillou L (2008) Control of toxic marine dinoflagellate blooms by serial parasitic killers. Science 322:1254–1257

    CAS  PubMed  Google Scholar 

  • Chen S, Zhou Y, Chen Y, Gu J (2017) fastp: an ultra-fast all-in-one FASTQ preprocessor. bioRxiv 274100, https://doi.org/10.1101/274100

  • Cho J, Giovannoni SJ (2004) Cultivation and growth characteristics of a diverse group of oligotrophic marine Gammaproteobacteria. Appl Environ Microbiol 70:432–440

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cock PA, Antao T, Chang JT, Chapman BA, Cox CJ, Dalke A, Friedberg I, Hamelryck T, Kauff F, Wilczynski B, de Hoon MJL (2009) Biophyton: freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics 25:1422–1423

    CAS  PubMed  PubMed Central  Google Scholar 

  • Conn HJ, Jennison MW, Weeks OB (1957) “Cultural characteristics”, chapter VII: routine tests for the identification of bacteria. In: Pelezar MJ Jr,  Bard RC, Burnett GW, Conn HJ, DeMoss RD, Evans EE, Jennison MW, McKee AP, Riker AJ, Warren J, Weeks OB, Weiss FA Manual of microbiological methods. McGraw-Hill, New York, pp 148–149

  • Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772

    CAS  PubMed  PubMed Central  Google Scholar 

  • Doucette GJ, McGovern ER, Babinchak JA (1999) Algicidal bacteria active against Gymnodinium breve (Dinophyceae) I bacterial isolation and characterization of killing activity. J Phycol 35:1447–1454

    Google Scholar 

  • Dupont CL, Rusch DB, Yooseph S, Lombardo M, Richter RA, Valas R, Novotny M, Yee-Greenbaum J, Selengut JD, Haft DH, Halpern AL, Lasken RS, Nealson K, Friedman R, Venter JC (2012) Genomic insights to SAR86, an abundant and uncultivated marine bacterial lineage. ISME J 6:1186–1199

    CAS  PubMed  Google Scholar 

  • Escobar MTL, Sotto LPA, Jacinto GS, Benico GA, San Diego-McGlone ML, Azanza RV (2013) Eutrophic conditions during the 2010 fish kill in Bolinao and Anda, Pangasinan. J Environ Sci Manag Special Issue 1-2013:29–35

    Google Scholar 

  • Fensome RA, Saldarriaga JF, Taylor FJRM (1999) Dinoflagellate phylogeny revisited: reconciling morphological and molecular based phylogenies. Grana 38:66–80

    Google Scholar 

  • Fukami K, Nishijima T, Murata H, Doi S, Hata Y (1991) Distribution of bacteria influential on the development and the decay of Gymnodinium nagasakiense red tide and their effects on algal growth. Nippon Suisan Gakkaishi 57:2321–2326

    Google Scholar 

  • Furio EF, Gonzales CL (2002) Toxic red tide and paralytic shellfish poisoning profiles in the Philippines. In: Gonzales C, Sakamoto S, Furio E, Ogata T, Kodoma M, Fukuyo Y (eds) Practical guide on paralytic shellfish poisoning monitoring in the Philippines. Bureau of Fisheries and Aquatic Resources (BFAR) and Japan International Cooperation Agency (JICA), Manila, Philippines pp 3–27

  • Garces E, Delgado M, Maso M, Camp J (1998) Life history and in situ growth rates of Alexandrium taylori (Dinophyceae, Pyrrophyta). J Phycol 34:880–887

    Google Scholar 

  • Garces E, Maso M, Camp J (2002) Role of temporary cysts in the population dynamics of Alexandrium taylori (Dinophyceae). J Plankton Res 24:681–686

    Google Scholar 

  • Gelin F, Volkman JK, Largeau C, Derenne S, Sinninghe Damste JS, De Leeuw JW (1999) Distribution of aliphatic, nonhydrolyzable biopolymers in marine microalgae. Org Geochem 30:147–159

    CAS  Google Scholar 

  • Gonzales CL (1989) Pyrodinium blooms and paralytic shellfish poisoning in the Philippines. In: Hallegraeff GM, Maclean JL (eds) Biology, epidemiology and management of Pyrodinium red tides, vol 21. ICLARM Conf proc, pp 39–47. http://pubs.iclarm.net/libinfo/Pdf/Pub%20CP6%2021.pdf. Accessed 19 May 2018

  • Guan C, Guo X, Cai G, Zhang H, Li Y, Zheng W, Zheng T (2014) Novel algicidal evidence of a bacterium Bacillus sp. LP-10 killing Phaeocystis globosa, a harmful algal bloom causing species. Biol Control 76:79–86

    Google Scholar 

  • Guillard RRL, Ryther JH (1962) Studies of marine planktonic diatoms I Cyclotella nana Hustedt and Detonula confervaceae (Cleve) Gran. Can J Microbiol 8:229239

    Google Scholar 

  • Hallegraeff GM (1993) A review of harmful algal blooms and their apparent global increase. Phycologia 32:79–99

    Google Scholar 

  • Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4:9

    Google Scholar 

  • Harnack K, Spolaczyk R, Janke SA (1999) Turbidity measurements (OD600) with absorption spectrophotometers Biospecktrum 6:503-504. As cited in Eppendorf (2015) OD600 measurements using different photometers. White Paper, No 28, 4 pp. https://online-shop.eppendorf.com/OC-en/eshopdownload/downloadbykey/148370_186. Accessed 07 Oct 2018

  • Holmstrom C, Kjelleberg S (1999) Marine Pseudoalteromonas species are associated with higher organisms and produce biologically active extracellular agents. FEMS Microbiol Ecol 30:285–293

    CAS  PubMed  Google Scholar 

  • Huang X, Madan A (1999) CAP3: a DNA sequence assembly program. Genome Res 9:868–877

    CAS  PubMed  PubMed Central  Google Scholar 

  • Imai I, Ishida Y, Hata Y (1993) Killing of marine phytoplankton by a gliding bacterium Cytophaga sp., isolated from the coastal sea of Japan. Mar Biol 116:527–532

    Google Scholar 

  • Imai I, Sunahara T, Nishikawa T, Hori Y, Kondo R, Hiroishi S (2001) Fluctuations of the red tide flagellates Chattonella spp. (Raphidophyceae) and the algicidal bacterium Cytophaga sp. in the Seto Inland Sea, Japan. Mar Biol 138:1043–1049

    CAS  Google Scholar 

  • Jensen MØ, Moestrup Ø (1997) Autoecology of the toxic dinoflagellate Alexandrium ostenfeldii: life history and growth at different temperatures and salinities. Eur J Phycol 32:9–18

    Google Scholar 

  • Jeong H, Yim JH, Lee C, Choi S, Park Y, Yoon SH, Hur C, Kang H, Kim D, Lee HH, Park KH, Park S, Park H, Lee HK, Oh TK, Kim JF (2005) Genomic blueprint of Hahella chejuensis, a marine microbe producing an algicidal agent. Nucleic Acids Res 33:7066–7073

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jiao N, Herndl GJ, Hansell DA, Benner R, Kattner G, Wilhelm SW, Kirchman DL, Weinbauer MG, Luo T, Chen F, Azam F (2010) Microbial production of recalcitrant dissolved organic matter: long-term carbon storage in the global ocean. Nat Rev Microbiol 8:593–599

    CAS  PubMed  Google Scholar 

  • Joint I, Muhling M, Querellou J (2010) Culturing marine bacteria – an essential prerequisite for biodiscovery. Microb Biotechnol 3:564–575

    CAS  PubMed  PubMed Central  Google Scholar 

  • Katoh K, Misawa K, Kuma K, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30:3059–3066

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim HG (1998) Cochlodinium polykrikoides blooms in Korean waters and their mitigation. In: Reguera B, Blanco J, Fernandez ML, Wyatt T (eds) Harmful algae. Xunta de Galicia and IOC-UNESCO, Grafisant, Santiago de Compostela, pp 227–228 As cited in Kim HG (2006) Mitigation and controls of HABs. In: Graneli E, Turner JT (eds). Ecology of harmful algae. Springer Berlin, pp 327–366

    Google Scholar 

  • Kim HG (2006) Mitigation and controls of HABs. In: Graneli E, Turner JT (eds) Ecology of harmful algae. Springer, Berlin, pp 327–336

    Google Scholar 

  • Kim S, Park MG (2014) Amoebophrya spp. from the bloom-forming dinoflagellate Cochlodinium polykrikoides: parasites not nested in the “Amoebophrya ceratii complex”. J Eukaryot Microbiol 61:173–181

    PubMed  Google Scholar 

  • Kita T, Fukuyo Y, Tokuda H, Hirano R (1985) Life history and ecology of Goniodoma pseudogoniaulax (Pyrrhophyta) in a rockpool. Bull Mar Sci 37:643–651

    Google Scholar 

  • Kodani S, Imoto A, Mitsutani A, Murakami M (2002) Isolation and identification of the antialgal compound, harmane (1-methyl-β-carboline), produced by the algicidal bacterium, Pseudomonas sp. K44-1. J Appl Phycol 14:109–114

    CAS  Google Scholar 

  • Kokinos JP, Eglinton TI, Goni MA, Boon JJ, Martoglio PA, Anderson DM (1998) Characterization of a highly resistant biomacromolecular material in the cell wall of a marine dinoflagellate resting cyst. Org Geochem 28:265–288

    CAS  Google Scholar 

  • Kumari P, Bhattacharjee S, Poddar A, Das SK (2016) Sulfitobacter faviae sp. nov., isolated from the coral Favia veroni. Int J Syst Evol Microbiol 66:3786–3792

    CAS  PubMed  Google Scholar 

  • Lee S, Kato J, Takiguchi N, Kuroda A, Ikeda T, Mitsutani A, Ohtake H (2000) Involvement of an extracellular protease in algicidal activity of the marine bacterium Pseudoalteromonas sp. strain A28. Appl Environ Microbiol 66:4334–4339

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lenneman EM, Wang P, Barney BM (2014) Potential application of algicidal bacteria for improved lipid recovery with specific algae. FEMS Microbiol Lett 354:102–110

    CAS  PubMed  Google Scholar 

  • Letchumanan V, Chan K, Lee L (2014) Vibrio parahaemolyticus: a review on the pathogenesis, prevalence, and advance molecular identification techniques. Front Microbiol 15:1–13

    Google Scholar 

  • Letunic I, Bork P (2007) Interactive tree of life (iTOL): an online tool for phylogenetic tree display and annotation. Bioinformatics 23:127–128

    CAS  PubMed  Google Scholar 

  • Li D, Zhang H, Fu L, An X, Zhang B, Li Y, Chen Z, Zheng W, Yi L, Zheng T (2014a) A novel algicide: evidence of the effect of a fatty acid compound from the marine bacterium, Vibrio sp. BS02 on the harmful dinoflagellate, Alexandrium tamarense. PLoS One 9:e91201

    PubMed  PubMed Central  Google Scholar 

  • Li Y, Zhu H, Zhang H, Chen Z, Tian Y, Zu H, Zheng T, Zheng W (2014b) Toxicity of algicidal extracts from Mangrovimonas yunxiaonensis strain LY01 on a HAB causing Alexandrium tamarense. J Hazard Mater 278:372–381

    CAS  PubMed  Google Scholar 

  • Lin Y, Tang K, Li S, Liu K, Sun J, Jiao N (2014) Pelagibaca abyssi sp. nov., of the family Rhodobacteraceae, isolated from deep-sea water. Antonie Van Leeuwenhoek 106:507–513

    PubMed  Google Scholar 

  • Lovejoy C, Bowman JP, Hallegraeff GM (1998) Algicidal effects of a novel marine Pseudoalteromonas isolate (Class Proteobacteria, Gamma Subdivision) on harmful algal bloom species of the genera Chattonella, Gymnodinium, and Heterosigma. Appl Microbiol 64:2806–2813

    CAS  Google Scholar 

  • Lu XL, Xu QZ, Shen YH, Liu XY, Jiao BH, Zhang WD, Ni KY (2008) Macrolactin S, a novel macrolactin antibiotic from marine Bacillus sp. Nat Prod Res 22:342–347

    CAS  PubMed  Google Scholar 

  • Lumayno SD, Villanoy C, Yñiguez A, Alabia I, Fernandez IQ, Benico G, Azanza R (2013) Current patterns and residence times in Matarinao and Murcielagos Bays, Philippines: implications on distribution of Pyrodinium blooms (Abs). In: McManus MA, Berdalet E, Ryan J, Yamazaki H, Jaffe JS, Ross ON, Burchard H, Chavez FP (eds) GEOHAB 2013 Global Ecology and Oceanography of Harmful Algal Blooms, GEOHAB core research project: HABs in stratified systems Workshop on “Advances and challenges for understanding physical-biological interactions in HABs in stratified environments”. IOC and SCOR, Paris and Newark, Delaware, USA, p 44

    Google Scholar 

  • Luo H, Moran MA (2014) Evolutionary ecology of the marine Roseobacter clade. Microbiol Mol Biol Rev 78:537–587

    Google Scholar 

  • Manage PM, Kawabata Z, Nakano S (2000) Algicidal effect of the bacterium Alcaligenes denitrificans on Microcystis spp. Aquat Microb Ecol 22:111–117

    Google Scholar 

  • Manset KJV, Azanza RV, Onda DFL (2013) Algicidal bacteria from fish culture areas in Bolinao, Pangasinan, Northern Philippines. J Environ Sci Manag Special Issue 1:11–20

    Google Scholar 

  • Manz W, Amann R, Ludwig W, Vancanneyt M, Schleifer K (1996) Application of a suite of 16S rRNA-specific oligonucleotide probes designed to investigate bacteria of the phylum cytophaga-flavobacter-bacteroides in the natural environment. Microbiology 142:1097–1106

    CAS  PubMed  Google Scholar 

  • Mayali X, Azam F (2004) Algicidal bacteria in the sea and their impact on algal blooms. J Eukaryot Microbiol 51:139–144

    PubMed  Google Scholar 

  • Mayali X, Doucette GJ (2002) Microbial community interactions and population dynamics of an algicidal bacterium active against Karenia brevis (Dinophyceae). Harmful Algae 1:277–293

    Google Scholar 

  • Montresor M (1995) The life history of Alexandrium pseudogonyaulax (Gonyaulacales, Dinophyceae). Phycologia 34:444–448

    Google Scholar 

  • Moran MA, Gonzalez JM, Kiene RP (2003) Linking a bacterial taxon to sulfur cycling in the sea: studies of the marine Roseobacter group. Geomicrobiol J 20:375–388

    CAS  Google Scholar 

  • Morrill LC, Loeblich AR III (1981) The dinoflagellate pellicular wall layer and its occurrence in the Division Pyrrophyta. J Phycol 17:315–323

    Google Scholar 

  • Mu R, Fan Z, Pei H, Yuan X, Liu S, Wang X (2007) Isolation and algae-lysing characteristics of the algicidal bacterium B5. J Environ Sci 19:1336–1340

    CAS  Google Scholar 

  • Nagasaki K (1998) Possible use of algicidal viruses as microbiological agents against harmful algal blooms. Microbes Environ 13:109–113

    Google Scholar 

  • Nagasaki K, Yamaguchi M, Imai I (1999) Algicidal activity of a killer bacterium against the harmful red tide dinoflagellate Heterocapsa circularisquama isolated from Ago Bay. Japan Nippon Suisan Gakk 66:666–673

    Google Scholar 

  • Nagasaki T, Tomaru Y, Shirai Y, Mizumoto H, Nishida K, Takao Y (2005) Possible use of viruses as a microbiological agent to control. HAB proceedings of the 1st international workshop on HAB Northwest Pacific region, Toyama, pp 106–108

    Google Scholar 

  • Nakashima T, Tamura T, Kurachi M, Yamaguchi K, Oda T (2005) Apoptosis-mediated cytotoxicity of prodigiosin-like red pigment produced by y-Proteobacterium and its multiple bioactivities. Biol Pharm Bull 28:2289–2295

    CAS  PubMed  Google Scholar 

  • Nakashima T, Miyazaki Y, Matsuyama Y, Muraoka W, Yamaguchi K, Oda T (2006) Producing mechanism of an algicidal compound against red tide phytoplankton in a marine bacterium y-proteobacterium. Appl Microbiol Biotechnol 73:684–690

    CAS  PubMed  Google Scholar 

  • Onda DFL, Benico G, Sulit AL, Gaite PL, Azanza RV, Lluisma AO (2013) Morphological and molecular characterization of some HAB-forming dinoflagellates from Philippine waters. Philipp Sci Lett 6:1–10

    Google Scholar 

  • Onda DFL, Lluisma AO, Azanza RV (2014) Development, morphological characteristics and viability of temporary cysts of Pyrodinium bahamense var compressum (Dinophyceae) in vitro. Eur J Phycol 3:265–275

    Google Scholar 

  • Onda DFL, Azanza RV, Lluisma AO (2015) Potential DMSP-degrading Roseobacter-clade dominate endosymbiotic microflora of Pyrodinium bahamense var compressum (Dinophyceae) in vitro. Arch Microbiol 197:965–971

    CAS  PubMed  Google Scholar 

  • Orizar IS, Rivera PPL, San Diego-McGlone ML, Azanza RV (2013) Harmful algal bloom (HAB) mitigation using ball clay: effect on non-target organisms. J Environ Sci Manag Special Issue 1:36–43

    Google Scholar 

  • Oshima Y (1989) Toxins in Pyrodinium bahamense var. compressum and infested marine organisms. In: Hallegraeff GM, Maclean JL (eds) Biology, epidemiology and management of Pyrodinium red tides, vol 21. ICLARM Conf proc, pp 73–79. http://pubs.iclarm.net/libinfo/Pdf/Pub%20CP6%2021.pdf. Accessed 19 May 2018

  • Padilla LV, San Diego-McGlone ML, Azanza RV (2010) Exploring the potential of clay in mitigating Pyrodinium bahamense var compressum and other harmful algal species in the Philippines. J Appl Phycol 22:761–768

    CAS  Google Scholar 

  • Reysenbach A, Longnecker K, Kirshtein J (2000) Novel bacterial and archaeal lineages from an in situ growth chamber deployed at a Mid-Atlantic Ridge hydrothermal vent. Appl Environ Microbiol 66:3798–3806

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rice P, Longden I, Bleasby A (2000) EMBOSS: the European molecular biology open software suite. Trends Genet 16:276–277

    CAS  PubMed  Google Scholar 

  • Rintala JM, Spilling K, Blomster J (2007) Temporary cyst enables long-term dark survival of Scrippsiella hangoei (Dinophyceae). Mar Biol 152:57–62

    Google Scholar 

  • Rounsefell JE, Evans GA (1958) Large-scale experimental test of copper sulfate as a control for the Florida red tide, Special Scientific Report - Fisheries No. 270. United States Fish and Wildlife Service, Washington, D.C., 57 pp As cited in Kim HG (2006) Mitigation and controls of HABs. In: Graneli E, Turner JT (eds) Ecology of harmful algae. Springer, Berlin, pp 327–366

  • San Diego-McGlone ML, Azanza RV, Villanoy CL, Jacinto GS (2008) Eutrophic waters, algal bloom and fish kill in fish farming areas in Bolinao, Pangasinan, Philippines. Mar Pollut Bull 57:295–301

    CAS  PubMed  Google Scholar 

  • Sarjeant WAS (1986) Review of Evitt, WR, 1985, Sporopollenin dinoflagellate cysts: their morphology and interpretation. Micropaleontology 32:282–285

    Google Scholar 

  • Sarwar G, Matayoshi S, Oda H (1987) Purification of a κ-carrageenase from marine Cytophaga species. Microbiol Immunol 31:869–877

    CAS  PubMed  Google Scholar 

  • Schlitzer R (2018) Ocean data view. https://www.odvawide. Accessed 17 Oct 2018

  • Schmidt U, Chmel H, Cobbs C (1979) Vibrio alginolyticus infections in humans. J Clin Microbiol 1I0:666–668

    Google Scholar 

  • Scott KM, Sievert SM, Abril FN, Ball LA, Barrett CJ, Blake RA, Boller AJ, Chain PSG, Clark JA, Davis CR, Detter C, Do KF, Dobrinski KP, Faza BI, Fitzpatrick KA, Freyermuth SK, Harmer TL, Hauser LJ, Hugler M, Kerfeld CA, Klotz MG, Kong WW, Land M, Lapidus A, Larimer FW, Longo DL, Lucas S, Malfatii SA, Massey SE, Martin DD, McCuddin Z, Meyer F, Moore JL, Ocampo LH Jr, Paul JH, Paulsen IT, Reep DK, Ren Q, Ross RL, Sato PY, Thomas P, Tinkham LE, Zeruth GT (2006) The genome of deep-sea vent chemolithoautotroph Thiomicrospira crunogena XCL-2. PLoS Biol 4:2196–2212

    CAS  Google Scholar 

  • Shirota A (1989) Red tide problem and countermeasures. Int J Aquat Fish Technol 1:195–293 As cited in Kim HG (2006) Mitigation and controls of HABs. In: Graneli E, Turner JT (eds). Ecology of harmful algae. Springer, Berlin, pp 327–366

    Google Scholar 

  • Siringan FP, Peleo-Alampay A, David CP, Reotita J, Saban R, Genson F, Javellana GR, Mascariñas R (2012) Terminal report: ecology and oceanography of harmful algal blooms in the Philippines (PhilHABs), Project 5 Eutrophication, climate and algal bloom in the tropics. The Marine Science Institute, University of the Philippines, Diliman, Quezon City 109 pp

  • Sohn JH, Lee J, Yi H, Jongsik C, Bae KS, Ahn T, Kim S (2004) Kordia algicida gen nov., sp. nov., an algicidal bacterium isolated from red tide. Int J Syst Evol Microbiol 54:675–680

    CAS  PubMed  Google Scholar 

  • Sotelo Y (2011) Fishkill strikes Anda, Bolinao in Pangasinan. Inquirer.Net. https://newsinfo.inquirer.net/10713/fishkill-strikes-anda-bolinao-in-pangasinan. Accessed 05 May 2019

  • Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313

    CAS  PubMed  PubMed Central  Google Scholar 

  • Su JQ, Yang XR, Zheng TL, Tian Y, Jiao NZ, Cai LZ, Hong HS (2007) Isolation and characterization of a marine algicidal bacterium against the toxic dinoflagellate Alexandrium tamarense. Harmful Algae 6:799–810

    CAS  Google Scholar 

  • Tarutani K, Nagasaki K, Itakura S, Yamaguchi M (2001) Isolation of a virus infecting the novel shellfish-killing dinoflagellate Heterocapsa circularisquama. Aquat Microb Ecol 23:103–111

    Google Scholar 

  • Uchida T, Toda S, Matsuyama Y, Yamaguchi M, Kotani Y, Honjo T (1999) Interactions between the red tide dinoflagellates Heterocapsa circularisquama and Gymnodinium mikimotoi in laboratory culture. J Exp Mar Biol Ecol 241:285–299

    Google Scholar 

  • Vargas VMD (2009) Isolation and characterization of algicidal bacteria against Pyrodinium bahamense var. compressum from the Philippines. MSc Thesis, University of the Philippines, Diliman, Quezon City, 52 pp

  • Xu H, Jiang L, Li S, Zeng X, Shao Z (2015) Mameliella atlantica sp. nov., a marine bacterium of the Roseobacter clade isolated from deep-sea sediment of the South Atlantic Ocean. Int J Syst Evol Microbiol 65:2255–2259

    CAS  PubMed  Google Scholar 

  • Yang X, Li X, Zhou Y, Zheng W, Yu C, Zheng T (2014) Novel insights into the algicidal bacterium DH77-1 killing the toxic dinoflagellate Alexandrium tamarense. Sci Total Environ 482-483:116–124

    CAS  PubMed  Google Scholar 

  • Yoshinaga I, Kawai T, Takeuchi T, Ishida Y (1995) Distribution and fluctuation of bacteria inhibiting the growth of a marine red tide phytoplankton Gymnodinium mikimotoi in Tanabe Bay (Wakayama Pref, Japan). Fish Sci 61:780–786

    CAS  Google Scholar 

  • Young LS, Armstrong D (1972) Pseudomonas aeruginosa infections. CRC Crit Rev Clin Lab Sci 3:291–347

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study is part of the research projects: Ecology and Oceanography of Harmful Algal Blooms in the Philippines (PhilHABs) Project 2. Microbial Community (HAB Species and Associated Bacteria) Composition and Succession and HAB Genomics Project 1. Molecular Toxins and Other National Products from HAB Causative Organisms and Bacteria for Standards and Tools. We would also like to thank Dr. Windell L. Rivera, Dr. Lilibeth Salvador-Reyes and Dr. Mary Ann G. Santos for their constructive comments, Sammy Santos and Estrelita Flores for their help in maintaining the algal cultures, and Jenelyn Mendoza for some technical assistance.

Funding

PhilHABs Project 2 and HAB Genomics Project 1 were  funded and supported by the Department of Science Technology (DOST) through the Philippine Council for Agriculture, Aquatic and Natural Resources Research and Development (PCAARRD). Additional support was given by an MSI in-house grant to DFLO for the CLSM work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deo Florence L. Onda.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dungca-Santos, J.C.R., Caspe, F.J.O., Tablizo, F.A. et al. Algicidal potential of cultivable bacteria from pelagic waters against the toxic dinoflagellate Pyrodinium bahamense (Dinophyceae). J Appl Phycol 31, 3721–3735 (2019). https://doi.org/10.1007/s10811-019-01839-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-019-01839-0

Keywords

Navigation