Skip to main content

Advertisement

Log in

Sustainable cultivation of Nannochloropsis gaditana microalgae in outdoor raceways using flue gases for a complete 2-year cycle: a Circular Economy challenge

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

This research was undertaken in the framework of the Circular Economy. Its aim is to assess the technical feasibility and sustainability of a semi-industrial process for the outdoor cultivation of Nannochloropsis gaditana, using flue gases, on demand, from a coal-fired power generation plant. Within this main aim, three secondary objectives were defined: (i) to produce an accurate forecast of the annual average biomass production; (ii) to assess how the production rate and the biochemical composition of the biomass vary with the weather conditions over the course of a year; and (iii) to identify suitable markets for the biomass produced, in accordance with Spanish legislation. The study was carried out over 2 years, and an extra year was taken to analyze the results. The importance of this research is that it covers the lack of current knowledge, based on the available literature, regarding experimentation with microalgae culture outdoors, on a semi-industrial scale of 10,000 L, for a period of two full years. Our results show that, firstly, productivity changes from 0.025 ± 0.010 g (dry weight) L−1 day−1 (g d.wt L−1 day−1) to 0.160 ± 0.030 g d.wt L−1 day−1, as irradiation increases, and secondly, that the content of polyunsaturated fatty acids decreases, from 4.770 ± 0.770% dry weight (% d.wt) to 3.220 ± 0.535% d.wt, as irradiation increases. The maintenance of the culture during a complete cycle of 2 years, under the stated conditions, demonstrates the technical feasibility and sustainability of the process. In accordance with current Spanish regulations, the results of biochemical analysis of the harvested biomass confirm that it is suitable for use as animal feed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • AOAC International (1990) Official methods of analysis of AOAC international, 15th edn. Association of Analytical Chemist Inc., Arlington 1st revision

    Google Scholar 

  • AOAC International (2002) Official methods of analysis of AOAC international, 17th edn. Association of Analytical Communities, Gaithersburg 1st revision

    Google Scholar 

  • APAT-CNR-IRSA (2003) Metodi analitici per le acque, Manuali e Linee Guida, 29:575–581

  • Beardall J, Raven JA (2013) Limits to photoprophic growth in dense culture: CO2 supply and light. In: Borowitzka MA, Moheimani NR (eds) Algae for biofuels and energy. Springer, Dordrecht, pp 91–97

    Chapter  Google Scholar 

  • Belay A (1997) Mass culture of Spirulina outdoors – the earthrise farms experience. In: Vonshak A (ed) Spirulina platensis (Arthrospira): physiology, cell-biology and biochemistry. Taylor & Francis, London, pp 131–158

    Google Scholar 

  • Borowitzka MA (1997) Microalgae for aquaculture: opportunities and constrains. J Appl Phycol 9:393–401

    Article  Google Scholar 

  • Borowitzka MA (2013) High-value products from microalgae-their development and commercialization. J Appl Phycol 25:743–756

    Article  CAS  Google Scholar 

  • Borowitzka MA, Moheimani NR (2013) Sustainable biofuels from algae. Mitig Adapt Strat Global Change 18:13–25

    Article  Google Scholar 

  • Borowitzka MA, Vonshak A (2017) Scaling up microalgal cultures to commercial uses. Eur J Phycol 52:407–418

    Article  CAS  Google Scholar 

  • Camacho-Rodríguez J, Cerón-García MC, González-López CV, Fernandez-Sevilla JM, Contreras-Gómez A, Molina-Grima E (2013) A low-cost culture medium for the production of Nannochloropsis gaditana biomass optimized for aquaculture. Bioresour Technol 144:57–66

    Article  CAS  PubMed  Google Scholar 

  • Davis R, Aden A, Pienkos P (2011) Techno-economic analysis of microalgae for fuel production. Appl Energy 88:3524–3531

    Article  Google Scholar 

  • Davison I (1991) Environmental effect on algal photosynthesis: temperature. J Phycol 27:2–8

    Article  Google Scholar 

  • Duarte JH, Greque de Morais E, Radmann EM, Costa JAV (2017) Biological CO2 mitigation from coal power plant by Chlorella fusca and Spirulina sp. Bioresour Technol 234:472–475

    Article  CAS  PubMed  Google Scholar 

  • Fawley MW, Jameson I, Fawley KP (2015) The phylogeny of the genus Nannochloropsis (Monodopsidaceae, Eustigmatophyceae), with descriptions of N. australis sp. nov. and Microchloropsis gen. nov. Phycologia 54:545–552

    Article  CAS  Google Scholar 

  • Fu FX, Warner ME, Zhang Y, Feng Y, Hutchins DA (2007) Effects of increased temperature and CO2 on photosynthesis, growth and elemental ratios in marine Synechococcus and Prochlorococcus (cyanobacteria). J Phycol 43:485–496

    Article  Google Scholar 

  • Geissdoerfer M, Savaget P, Bocken NMP, Hultink EJ (2017) The circular economy- a new sustainability paradigm. J Clean Prod 143:757–768

    Article  Google Scholar 

  • Ho SS, Chen CY, Chang JS (2012) Effect of light intensity and nitrogen starvation on CO2 fixation and lipid/carbohydrate production of an indigenous microalga Scenedesmus obliquus CNW-N. Bioresour Technol 113:244–252

    Article  CAS  PubMed  Google Scholar 

  • Hosseini NS, Shang H, Ross GM, Scott JA (2016) Comparative analysis of top-lit bubble column and gas-lift bioreactors for microalgae-sourced biodiesel production. Energy Convers Manag 130:230–239

    Article  CAS  Google Scholar 

  • Hsueh HT, Li WJ, Chen HH, Chu H (2009) Carbon bio-fixation by photosynthesis of Thermosynechococuccus sp. CL-1 and Nannochloropsis oculata. J. Photochim. Photobiol. B, 95:33–39

  • Ishika T, Bahri PA, Laird DW, Mohemani NR (2017) The effect of gradual increase in salinity on the biomass productivity and biochemical composition of several marine, halotolerant and halophilic microalgae. J Appl Phycol 30:1453–1464

    Article  CAS  Google Scholar 

  • Jiménez C, Cossío BR, Labella D, Niell FX (2003) The feasibility of industrial production of Spirulina in Southern Spain. Aquaculture 217:179–190

    Article  Google Scholar 

  • Ledda C, Romero Villegas GI, Adani F, Acién Fernández FG, Molina Grima E (2015) Utilization of concentrate from wastewater treatment for the outdoor production of Nannochloropsis gaditana biomass at pilot-scale. Algal Res 12:17–25

    Article  Google Scholar 

  • Macarthur E (2015) Circular Economy. Ellenmacarthurfoundation.org. https://www.ellenmacarthurfoundation.org/circular-economy. Accessed 23 April 2018

  • Mendoza JL, Granados MR, de Godos I, Acién FG, Molina E, Banks C, Heaven S (2013) Fluid-dynamic characterization of real-scale raceway reactors for microalgae production. Biomass Bioeng 54:267–275

    Article  CAS  Google Scholar 

  • Moheimani NR (2013) Inorganic carbon and pH effect on growth and lipid productivity of Tetraselmis suecica and Chlorella sp (Chlorophyta) grown outdoors in bag photobioreactors. J Appl Phycol 25:387–398

    Article  CAS  Google Scholar 

  • Moheimani NR, Borowitzka MA (2006) The longterm culture of the coccolithophore Pleurochrysis carterae (Haptophyta) in outdoor raceway ponds. J Appl Phycol 18:703–712

    Article  Google Scholar 

  • Mohemani NR, Borowitzka MA, Isdepsky A, Sing F (2013) Standard methods for measuring growth of algae and their composition. In: Borowitzka MA, Mohemani NR (eds) Algae for biofuels and energy. Springer, Dordrecht, pp 265–284

    Chapter  Google Scholar 

  • Negoro M, Shioji N, Miyamoto K, Miura Y (1991) Growth of microalgae in high CO2 gas and effects of Sox and NOx. Appl Biochem Biotechnol 28/29:877–886

    Article  Google Scholar 

  • Olaizola M (2000) Commercial production of astaxanthin from Haematococcus pluvialis using 25,000-liter outdoor photobioreactors. J Appl Phycol 12:499–506

    Article  CAS  Google Scholar 

  • Pal D, Khozin-Goldberg I, Cohen Z, Boussiva S (2011) The effect of light, salinity, and nitrogen availability on lipid production by Nannochloropsis sp. Appl Microbiol Biotechnol 90:1429–1441

    Article  CAS  PubMed  Google Scholar 

  • Regulation 575/2011 Catalog of raw materials for animal feed. European Parliament 16th June 2011. 159:25–65

  • Rocha JMS, García JEC, Henriques MHF (2003) Growth aspects of the marine microalga Nannochloropsis gaditana. Biomol Eng 20:237–242

    Article  CAS  PubMed  Google Scholar 

  • Royal Decree 465/2003 on all undesirable substances in animal feed. Official State Journal. Madrid, 29th April 2003. 102:16485–16493

  • San Pedro A, González-López CV, Acién FG, Molina-Grima E (2014) Outdoor pilot-scale production of Nannochloropsis gaditana: influence of culture parameters and lipid production rates in tubular photobioreactors. Bioresour Technol 169:667–676

    Article  CAS  PubMed  Google Scholar 

  • San Pedro A, González-Lopez CV, Acién FG, Molina-Grima E (2016) Outdoor pilot production Nannochloropsis gaditana: influence of culture parameters and lipid production rates in raceway ponds. Algal Res 8:205–213

    Article  Google Scholar 

  • Stephens E, Ross IL, King Z, Mussgnung JH, Kruse O, Posten C, Borowitzka MA, Hankamer B (2010) An economic and technical evaluation of microalgar biofuels. Nat Biotechnol 28:126–128

    Article  CAS  PubMed  Google Scholar 

  • Sukenik A, Zamora O, Carmeli Y (1993) Biochemical quality of marine unicellular algae with special emphasis on lipid composition. Aquaculture 117:313–326

    Article  CAS  Google Scholar 

  • Venteris ER, McBride RC, Coleman AM, Skaggs RL, Wigmosta MS (2014) Siting algae cultivation facilities for biofuel production in the United States: trade-offs between growth rate, site constructability, water availability, and infrastructure. Environ Sci Technol 48:3559–3566

    Article  CAS  PubMed  Google Scholar 

  • Vonshak A, Torzillo G, Masojidek J, Boussiba S (2001) Sub-optimal morning temperature induces photoinhibition in dense outdoor cultures of the alga Monodus subterraneus (Eustigmatophyta). Plant Cell Environ 24:1113–1118

    Article  Google Scholar 

  • White RL, Ryan RA (2015) Long-term cultivation of algae in open-raceway ponds: lessons from the field. Indust Biotechnol 11:213–220

    Article  Google Scholar 

  • Zhu B, Sun F, Yang M, Lu L, Yang G, Pan K (2014) Large-scale biodiesel production using flue gas from coal-fired power plants with Nannochloropsis microalgal biomass in open raceway ponds. Bioresour Technol 174:53–59

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The results of this study were obtained during the project: “Aplicación del conocimiento científico y tecnológico en Andalucía para el desarrollo de un proceso de extracción de compuestos bioactivos a partir de microalgas”, grant number 14/775, financed by Corporación Tecnológica de Andalucía (CTA). This work was in collaboration with ENDESA, Novatec Ingenieros Asesores S.L., the University of Cádiz and the Instituto de la Grasa (CSIC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Rodríguez López.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOCX 14.3 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

López, A.R., Rodríguez, S.B., Vallejo, R.A. et al. Sustainable cultivation of Nannochloropsis gaditana microalgae in outdoor raceways using flue gases for a complete 2-year cycle: a Circular Economy challenge. J Appl Phycol 31, 1515–1523 (2019). https://doi.org/10.1007/s10811-018-1710-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-018-1710-0

Keywords

Navigation