Skip to main content

Advertisement

Log in

Heterotrophic microalgae production on food waste and by-products

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

The present review provides an overview of the latest research on microalgae production techniques based on carbon instead of light as energy source. The independence of light in mixotrophic and heterotrophic cultivation considerably reduces production costs and space compared to autotrophic production. Hence, this production technique may play a key role to meet future increasing food and feed demands. In order to reach this aim, it is, however, necessary to explore the possibilities of utilizing low-cost carbon sources such as molasses from industrial waste streams. This review provides an overview of worldwide potentially available low-cost carbon sources, potential microalgae species and their chemical composition, available pre-treatment methods for media sterilization and enhanced bioavailability, latest literature on growth of heterotrophic microalgae cultured on new, innovative low cost carbon sources, non-sterile culture approaches, and finally, economic considerations including a future outlook.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Blimling, Associates (2017). Ingredient digest, vol 2

  • Bumbak F, Cook S, Zachleder V, Hauser S, Kovar K (2011) Best practices in heterotrophic high-cell-density microalgal processes: achievements, potential and possible limitations. Appl Microbiol Biotechnol 91:31–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cripps SJ, Bergheim A (2000) Solids management and removal for intensive land-based aquaculture production systems. Aquac Eng 22:33–56

    Article  Google Scholar 

  • El-Sheekh MM, Bedaiwy MY, Osman ME, Ismail MM (2014) Influence of molasses on growth, biochemical composition and ethanol production of the green algae Chlorella vulgaris and Scenedesmus obliquus. Journal of Agricultural Engineering and Biotechnology 2:20–28

    Article  Google Scholar 

  • Endo H, Nakajima K, Chino R, Shirota M (1974) Growth characteristics and cellular components of Chlorella regularis, heterotrophic fast growing strain. Agric Biol Chem 38:9–18

    Article  Google Scholar 

  • Enzing C, Sijtsma L, Parisi C, Vigani M, Barbosa M, Ploeg M, Rodrigues Cerezo E (2014) Microalgae-based products for the food and feed sector: an outlook for Europe. European Commission. Luxembourg

  • Espinosa-Gonzalez I, Parashar A, Bressler DC (2014) Heterotrophic growth and lipid accumulation of Chlorella protothecoides in whey permeate, a dairy by-product stream, for biofuel production. Bioresour Technol 155:170–176

    Article  CAS  PubMed  Google Scholar 

  • FAO (2014) The state of the world fisheries and aquaculture. Food and Agriculture Organization of the United Nations, Rome

  • FAO (2017) The global initiative on food loss and waste reduction. Food and Agriculture Organization of the United Nations, Rome

  • Gami B, Patel JP, Kothari IL (2014) Cultivation of Chlorella protothecoides (ISIBES -101) under autotrophic and heterotrophic conditions for biofuel production. J Algal Biomass Utln 5:20–29

    Google Scholar 

  • Graziani G, Schiavo S, Nicolai MA, Buono S, Fogliano V, Pinto G, Pollio A (2013) Microalgae as human food: chemical and nutritional characteristics of the thermo-acidophilic microalga Galdieria sulphuraria. Food Funct 4:144–152

    Article  CAS  PubMed  Google Scholar 

  • Gross W (1999) Revision of comparative traits for the acido-and thermophilic red algae Cyanidium and Galdieria. In: Seckbach J (ed) Enigmatic microorganisms and life in extreme environments. Vol 1. Springer, Berlin pp 437–446

  • Gross W, Schnarrenberger C (1995) Heterotrophic growth of two strains of the acido-thermophilic red alga Galdieria sulphuraria. Plant Cell Physiol 36:633–638

    CAS  Google Scholar 

  • Guerrero AB, Aguado PL, Sánchez J, Curt MD (2016) GIS-based assessment of banana residual biomass potential for ethanol production and power generation: a case study. Waste Biomass Valori 7:405–415

    Article  CAS  Google Scholar 

  • Harel M, Clayton D (2004) Feed formulation for terrestrial and aquatic animals. WO patent application WO/2004/080196 (23/09/2004)

  • Hayes RJ (2014) Cost of quality (CoQ) - an analysis of the cost of maintaining a state of compliance. International Pharmaceutical Industry 6:74–76

    Google Scholar 

  • Heritage J, Evans EGV, Killington RA (1997) Introductory microbiology. Cambridge University Press, Cambridge

  • Informa (2018) World molasses feed and ingredient report. Informa PLC. https://www.agra-net.com/agra/world-molasses-and-feed-ingredients-report/. Accessed 15 Nov 2018

  • Jelen P (2009) Dried whey, whey proteins, lactose and lactose derivative products. In: Tamime AY (ed) Dairy powders and concentrated products. Blackwell, Oxford, pp 255–267

    Chapter  Google Scholar 

  • Kotrbáček V, Doubek J, Doucha J (2015) The chlorococcalean alga Chlorella in animal nutrition: a review. J Appl Phycol 27:2173–2180

    Article  CAS  Google Scholar 

  • Lau KY, Pleissner D, Lin CSK (2014) Recycling of food waste as nutrients in Chlorella vulgaris cultivation. Bioresour Technol 170:144–151

    Article  CAS  PubMed  Google Scholar 

  • Leesing R, Kookkhunthod S (2011) Heterotrophic growth of Chlorella sp. KKU-S2 for lipid production using molasses as a carbon substrate. In: Proceedings of the International Conference on Food Engineering and Biotechnology, 2011. IACSIT Press, Singapore pp 87–91

  • Liu J, Sun Z, Zhong Y, Gerken H, Huang J, Chen F (2013) Utilization of cane molasses towards cost-saving astaxanthin production by a Chlorella zofingiensis mutant. J Appl Phycol 25:1447–1456

    Article  CAS  Google Scholar 

  • Miao X, Wu Q (2006) Biodiesel production from heterotrophic microalgal oil. Bioresour Technol 97:841–846

    Article  CAS  PubMed  Google Scholar 

  • Mohapatra D, Mishra S, Sutar N (2010) Banana and its by-product utilisation: An overview. J Sci Indust Res 69:323–329

  • Oesterhelt C, Schnarrenberger C, Gross W (1999) Characterization of a sugar/polyol uptake system in the red alga Galdieria sulphuraria. Eur J Phycol 34:271–277

    Article  Google Scholar 

  • Øverland M, Karlsson A, Mydland LT, Romarheim OH, Skrede A (2013) Evaluation of Candida utilis, Kluyveromyces marxianus and Saccharomyces cerevisiae yeasts as protein sources in diets for Atlantic salmon (Salmo salar). Aquaculture 402:1–7

    Article  CAS  Google Scholar 

  • Panesar PS, Kennedy JF (2012) Biotechnological approaches for the value addition of whey. Crit Rev Biotechnol 32:327–348

    Article  CAS  PubMed  Google Scholar 

  • Pérez R (1997) Feeding pigs in the tropics. Ministry of Sugar, Havana, Cuba

  • Perez-Garcia O, Escalante FM, de-Bashan LE, Bashan Y (2011) Heterotrophic cultures of microalgae: metabolism and potential products. Water Res 45:11–36

    Article  CAS  PubMed  Google Scholar 

  • Pleissner D, Rumpold BA (2018) Utilization of organic residues using heterotrophic microalgae and insects. Waste Manag 72:227–239

    Article  CAS  PubMed  Google Scholar 

  • Pleissner D, Venus J (2014) Agricultural residues as feedstocks for lactic acid fermentation. In: Green technologies for the environment, vol 1186. ACS Symposium Series, vol 1186. American Chemical Society, pp 247–263

  • Pulz O, Gross W (2004) Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol 65:635–648

    Article  CAS  PubMed  Google Scholar 

  • Radmer RJ, Parker BC (1994) Commercial applications of algae: opportunities and constraints. J Appl Phycol 6:93–98

    Article  Google Scholar 

  • Rigano C, Fuggi A, Rigano VDM, Aliotta G (1976) Studies on utilization of 2-ketoglutarate, glutamate and other amino acids by the unicellular alga Cyanidium caldarium. Arch Microbiol 107:133–138

    Article  CAS  PubMed  Google Scholar 

  • Rigano C, Aliotta G, Rigano VDM, Fuggi A, Vona V (1977) Heterotrophic growth patterns in the unicellular alga Cyanidium caldarium. Arch Microbiol 113:191–196

    Article  CAS  PubMed  Google Scholar 

  • Rodehutscord M, Jacobs S, Pack M, Pfeffer E (1995a) Response of rainbow trout (Oncorhynchus mykiss) growing from 50 to 150 g to supplements of DL-methionine in a semipurified diet containing low or high levels of cystine. J Nutr 125:964–969

    CAS  PubMed  Google Scholar 

  • Rodehutscord M, Jacobs S, Pack M, Pfeffer E (1995b) Response of rainbow trout (Oncorhynchus mykiss) growing from 50 to 170 g to supplements of either L-arginine or L-threonine in a semipurified diet. J Nutr 125:970–975

    CAS  PubMed  Google Scholar 

  • Rodehutscord M, Becker A, Pack M, Pfeffer E (1997) Response of rainbow trout (Oncorhynchus mykiss) to supplements of individual essential amino acids in a semipurified diet, including an estimate of the maintenance requirement for essential amino acids. J Nutr 127:10

    Article  Google Scholar 

  • Selvaratnam T, Pegallapati AK, Montelya F, Rodriguez G, Nirmalakhandan N, Van Voorhies W, Lammers PJ (2014) Evaluation of a thermo-tolerant acidophilic alga, Galdieria sulphuraria, for nutrient removal from urban wastewaters. Bioresour Technol 156:395–399

    Article  CAS  PubMed  Google Scholar 

  • Sharma YC, Singh B, Korstad J (2011) A critical review on recent methods used for economically viable and eco-friendly development of microalgae as a potential feedstock for synthesis of biodiesel. Green Chem 13:2993–3006

    Article  CAS  Google Scholar 

  • Shelly K, Higgins T, Beardall J, Wood B, McNaughton D, Heraud P (2007) Characterising nutrient-induced fluorescence transients (NIFTs) in nitrogen-stressed Chlorella emersonii (Chlorophyta). Phycologia 46:503–512

    Article  Google Scholar 

  • Shen Y, Yuan W, Pei Z, Mao E (2010) Heterotrophic culture of Chlorella protothecoides in various nitrogen sources for lipid production. Appl Biochem Biotechnol 160:1674–1684

    Article  CAS  PubMed  Google Scholar 

  • Sheth K (2017) Top banana producing countries in the world. World Atlas. https://www.worldatlas.com/articles/top-banana-producing-countries-in-the-world.html. Accessed 25 Apr 2017

  • USDA (2016) Statistics report 09040, bananas, raw. National Nutrient Database for Standard Reference, USDA Food Composition Databases

  • Vidotti DSA, Coelho R, Franco ML, Franco T (2014) Miniaturized culture for heterotrophic microalgae using low cost carbon sources as a tool to isolate fast and economical strains. Chem Eng Trans 38:325–330

    Google Scholar 

  • Vítová M, Goecke F, Sigler K, Řezanka T (2016) Lipidomic analysis of the extremophilic red alga Galdieria sulphuraria in response to changes in pH. Algal Res 13:218–226

    Article  Google Scholar 

  • Wai N (1955) Effects of some antiseptics on the growth of Chlorella. Physiol Plant 8:71–73

    Article  CAS  Google Scholar 

  • Wen Z-Y, Chen F (2003) Heterotrophic production of eicosapentaenoic acid by microalgae. Biotechnol Adv 21:273–294

    Article  CAS  PubMed  Google Scholar 

  • WHO/UNU (2007) Protein and amino acid requirements in human nutrition, WHO Technical Reports Series 935

  • Winkler B, Tosi H, Webster AJF, Resende FD, Oliveira AAMA, Villela LCV (2011) Dried yeast (Saccharomyces cerevisae) as a protein source for horses. Livest Sci 137:168–177

    Article  Google Scholar 

  • Xie T, Sun Y, Du K, Liang B, Cheng R, Zhang Y (2012) Optimization of heterotrophic cultivation of Chlorella sp. for oil production. Bioresour Technol 118:235–242

    Article  CAS  PubMed  Google Scholar 

  • Xie T, Xia Y, Zeng Y, Li X, Zhang Y (2017) Nitrate concentration-shift cultivation to enhance protein content of heterotrophic microalga Chlorella vulgaris: over-compensation strategy. Bioresour Technol 233:247–255

    Article  CAS  PubMed  Google Scholar 

  • Zepka LQ, Jacob-Lopes E, Goldbeck R, Souza-Soares LA, Queiroz MI (2010) Nutritional evaluation of single-cell protein produced by Aphanothece microscopica Nägeli. Bioresour Technol 101:7107–7111

    Article  CAS  Google Scholar 

  • Zhao J, Fleet GH (2005) Degradation of RNA during the autolysis of Saccharomyces cerevisiae produces predominantly ribonucleotides. J Ind Microbiol Biotechnol 32:415–423

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank all students and technical assistants participating in the virtual biotechnology company “TiGer BioTec” of the International Degree Course Industrial and Environmental Biology ISTAB (B.Sc.) at the University of Applied Sciences Bremen (Germany).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan S. W. Ende.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ende, S.S.W., Noke, A. Heterotrophic microalgae production on food waste and by-products. J Appl Phycol 31, 1565–1571 (2019). https://doi.org/10.1007/s10811-018-1697-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-018-1697-6

Keywords

Navigation