Skip to main content
Log in

Expression of multiple antihypertensive peptides as a fusion protein in the chloroplast of Chlamydomonas reinhardtii

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Hypertension affects about a quarter of the global population and is a major risk factor in cardiovascular diseases. Current pharmacological treatments are considered useful but lead to secondary effects that end in low compliance. In this work, a transplastomic Chlamydomonas reinhardtii strain producing three antihypertensive peptides (AHP) as a fusion protein has been developed. The chimeric protein was coded by a synthetic gene and transferred to the plastome in a site-specific integration approach. Expression was mediated by the rbcL promoter. Molecular analysis confirmed the presence of the transgene inserted in the chloroplast genome. An ELISA quantification assay indicated that the amount of recombinant protein is 34.4 ng per mg of freeze-dried biomass. The RPLKPW and AINPSK peptides were identified by HPLC after in vitro digestion form biomass of the transplastomic C. reinhardtii strain. The antihypertensive effect of the recombinant protein was demonstrated after intragastric administration of the genetically modified strain to spontaneously hypertensive rats (SHR) at a dose of 10 mg of recombinantAHP3 protein per kg of body weight with the maximal decrease in blood pressure 6 h post-administration. These results suggested that this transplastomic strain can be used to obtain a large quantity of antihypertensive peptides which could be useful for the production of functional foods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abubakar A, Saito T, Kitazawa H, Kawai Y, Itoh T (1998) Structural analysis of new antihypertensive peptides derived from cheese whey protein by proteinase K digestion. J Dairy Sci 81:3131–3138

    Article  PubMed  CAS  Google Scholar 

  • Agyei D, Danquah K (2011) Industrial-scale manufacturing of pharmaceutical-grade bioactive peptides. Biotechnol Adv 29:272–277

    Article  PubMed  CAS  Google Scholar 

  • Beltrán-López JI, Romero-Maldonado A, Monreal-Escalante E, Bañuelos-Hernández B, Paz-Maldonado LM, Rosales-Mendoza S (2016) Chlamydomonas reinhardtii chloroplasts express an orally immunogenic protein targeting the p210 epitope implicated in atherosclerosis immunotherapies. Plant Cell Rep 35:1133–1141

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Campos-Quevedo N, Rosales-Mendoza S, Paz-Maldonado LMT, Martinez-Salgado L, Guevara-Arauza JC, Soria-Guerra RE (2013) Production of milk-derived bioactive peptides as precursor chimeric proteins in chloroplasts of Chlamydomonas reinhardtii. Plant Cell Tissue Organ Cult 113:217–225

    Article  CAS  Google Scholar 

  • Champagne CM (2006) Dietary interventions on blood pressure: the dietary approaches to stop hypertension (DASH) trials. Nutr Rev 64:S53–S56

    Article  PubMed  Google Scholar 

  • Clare DA, Swaisgood HE (2000) Bioactive milk peptides: a prospectus. J Dairy Sci 83:1187–1195

    Article  PubMed  CAS  Google Scholar 

  • Daniell H, Ruiz O, Dhingra A (2004) Chloroplast genetic engineering to improve agronomic traits. In: Pena L (ed) Transgenic plants: methods and protocols, vol 286. Humana Press Inc., Totowa, pp 111–137

    Chapter  Google Scholar 

  • Diplock AT, Charleux JL, Crozier-Willi G, Kok FJ, Rice-Evans C, Roberfroid M, Stahl W, Vina-Ribes J (1999) Functional food science and defense against reactive oxidative species. Br J Nutr 80:S77–112

    Article  Google Scholar 

  • Dreesen IA, Charpin-El Hamri G, Fussenegger M (2010) Heat-stable oral alga-based vaccine protects mice from Staphylococcus aureus infection. J Biotechnol 145:273–280

    Article  PubMed  CAS  Google Scholar 

  • FitzGerald RJ, Meisel H (2000) Milk protein-derived peptide inhibitors of angiotensin-I-converting enzyme. Br J Nutr 84:S33–S37

    Article  PubMed  CAS  Google Scholar 

  • Fletcher SP, Muto M, Mayfield SP (2007) Optimization of recombinant protein expression in the chloroplasts of green algae. Adv Exp Med Biol 616:90–98

    Article  PubMed  Google Scholar 

  • Franklin SE, Mayfield SP (2004) Prospects for molecular farming in the green alga Chlamydomonas. Curr Opin Plant Biol 7:159–165

    Article  PubMed  CAS  Google Scholar 

  • Fujita H, Yokoyama K, Yoshikawa M (2000) Classification and antihypertensive activity of angiotensin I-converting enzyme inhibitory peptides derived from food proteins. J Food Sci 65:564–566

    Article  CAS  Google Scholar 

  • Goldschmidt-Clermont M (1991) Transgenic expression of aminoglycoside adenine transferase in the chloroplast: a selectable marker for site-directed transformation of Chlamydomonas. Nucl Acids Res 19:4083–4089

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guang C, Phillips RD (2009) Plant food-derived angiotensin I converting enzyme inhibitory peptides. J Agric Food Chem 57:5113–5120

    Article  PubMed  CAS  Google Scholar 

  • Hackenthal E, Paul M, Ganten D, Taugner R (1990) Morphology, physiology and molecular biology of renin secretion. Physiol Rev 70:1067–1116

    Article  PubMed  CAS  Google Scholar 

  • Hallmann A (2007) Algal transgenics and biotechnology. Transgenic Plant J 1:81–98

    Google Scholar 

  • Iwaniak A, Minkiewicz P, Darewicz M (2014) Food-originating ACE inhibitors, including antihypertensive peptides, as preventive food components in blood pressure reduction. Compr Rev Food Sci Food Saf 13:114–134

    Article  CAS  Google Scholar 

  • Johnston CI, Risvanis J (1997) Preclinical pharmacology of angiotensin II receptor antagonists. Am J Hypertens 10:306–310

    Article  Google Scholar 

  • Klein U, Salvador M, Bogorad L (1994) Activity of the Chlamydomonas chloroplast rbcL gene promoter is enhanced by a remote sequence element. Proc Nat Acad Sci USA 91:10819–10823

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kovács G, Peti-Peterdi J, Rosivall L, Darwin Bell P (2002) Angiotensin II directly stimulates macula densa Na-2Cl-K cotransport via apical AT1 receptors. Am J Physiol Renal Physiol 282:F301–F306

    Article  PubMed  Google Scholar 

  • Kozak M (1999) Initiation of translation in prokaryotes and eukaryotes. Gene 234:187–208

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Daniell H (2004) Engineering the chloroplast genome for hyperexpression of human therapeutic proteins and vaccine antigens. Meth Mol Biol 267:365–383

    CAS  Google Scholar 

  • Liu D, Sun H, Zhang L, Li S, Qin Z (2007) High-level expression of milk-derived antihypertensive peptide in Escherichia coli and its bioactivity. J Agric Food Chem 55:5109–5112

    Article  PubMed  CAS  Google Scholar 

  • López-Fandiño R, Otte J, van Camp J (2006) Physiological, chemical and technological aspects of milk-protein-derived peptides with antihypertensive and ACE-inhibitory activity. Int Dairy J 16:1277–1293

    Article  CAS  Google Scholar 

  • Manuell AL, Beligni MV, Elder JH, Siefker DT, Tran M, Weber A, McDonald TL, Mayfield SP (2007) Robust expression of a bioactive mammalian protein in Chlamydomonas chloroplast. Plant Biotech J 5:402–412

    Article  CAS  Google Scholar 

  • Marczak ED, Usui H, Fujita H, Yang YJ, Yokoo M, Lipkowski AW, Yoshikawa M (2003) New antihypertensive peptides isolated from rapeseed. Peptides 24:791–798

    Article  PubMed  CAS  Google Scholar 

  • Mayfield SP, Manuell AL, Chen S, Wu J, Tran M, Siefker D, Muto M, Marin-Navarro J (2007) Chlamydomonas reinhardtii chloroplasts as protein factories. Curr Op Biotech 18:126–133

    Article  CAS  Google Scholar 

  • Meisel H (2004) Multifunctional peptides encrypted in milk proteins. Biofactors 21:55–61

    Article  PubMed  CAS  Google Scholar 

  • Murray BA, FitzGerald RJ (2007) Angiotensin converting enzyme inhibitory peptides derived from food proteins: biochemistry, bioactivity and production. Curr Pharm Des 13:773–791

    Article  PubMed  CAS  Google Scholar 

  • Nakamura Y, Yamamoto N, Sakai N, Okubo O, Yamazaki S, Takano T (1995) Purification and characterization of angiotensin I-converting enzyme inhibitors from sour milk. J Dairy Sci 78:777–783

    Article  PubMed  CAS  Google Scholar 

  • Natesh R, Schwager SLU, Sturrock ED, Acharya KR (2003) Crystal structure of the human enzyme—lisinopril complex. Nature 421:1427–1429

    Article  CAS  Google Scholar 

  • Ochoa-Méndez CE, Lara-Hernández I, González LM, Aguirre-Bañuelos P, Ibarra-Barajas M, Castro-Moreno P, González-Ortega O, Soria-Guerra RE (2016) Bioactivity of an antihypertensive peptide expressed in Chlamydomonas reinhardtii. J Biotechnol 240:76–84

    Article  PubMed  CAS  Google Scholar 

  • Okamoto H, Hanagata H, Kawamura Y, Yanagida F (1995) Anti-hypertensive substances in fermented soybean. Plant Foods Hum Nutr 47:39–47

    Article  PubMed  CAS  Google Scholar 

  • Omotajo D, Tate T, Cho H, Choudhary M (2015) Distribution and diversity of ribosome binding sites in prokaryotic genomes. BMC Genomics 16(1):604. https://doi.org/10.1186/s12864-015-1808-6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Puchalska P, Marina ML, García MC (2012) Development of a reversed-phase high-performance liquid chromatography analytical methodology for the determination of antihypertensive peptides in maize crops. J Chromatogr A 1234:64–71

    Article  PubMed  CAS  Google Scholar 

  • Rao S, Su Y, Li J, Xu Z, Yang Y (2009) Design and expression of recombinant antihypertensive peptide multimer gene in Escherichia coli BL21. J Microbiol Biotechnol 19:1620–1627

    Article  PubMed  CAS  Google Scholar 

  • Reaves PY, Beck CR, Wang HW, Raizada MK, Katovich MJ (2003) Endothelial-independent prevention of high blood pressure in L-NAME-treated rats by angiotensin II type I receptor antisense gene therapy. Exp Physiol 88:467–473

    Article  PubMed  CAS  Google Scholar 

  • Rosales-Mendoza S, Paz-Maldonado LM, Soria-Guerra RE (2012) Chlamydomonas reinhardtii as a viable platform for the production of recombinant proteins: current status and perspectives. Plant Cell Rep 31:479–494

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Shah NP (2000) Effects of milk-derived bioactives: an overview. Br J Nutr 84:S3–S10

    Article  PubMed  CAS  Google Scholar 

  • Shimizu Y (1996) Microalgal metabolites: a new perspective. Annu Rev Microbiol 50:442–444

    Article  Google Scholar 

  • Soffer RL (1976) Angiotensin-converting enzyme and the regulation of vasoactive peptides. Annu Rev Biochem 45:73–94

    Article  PubMed  CAS  Google Scholar 

  • Stankevicius E, Kevelaitis E, Vainorius E, Simonsen U (2003) Role of nitric oxide and other endothelium-derived factors. Medicina 39:333–341

    PubMed  Google Scholar 

  • Surzycki R, Greenham K, Kitayama K, Dibal F, Wagner R, Rochaix JD, Ajam T, Surzycki S (2009) Factors effecting expression of vaccines in microalgae. Biologicals 37:133–138

    Article  PubMed  CAS  Google Scholar 

  • Tauzin J, Miclo L, Gaillard JL (2002) Angiotensin-I converting enzyme inhibitory peptides from tryptic hydrolysate of bovine alpha (S2)-casein. FEBS Lett 531:369–374

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Brandsma M, Tremblay R, Maxwell D, Jevnikar AM, Huner N, Shengwu M (2008) A novel expression platform for the production of diabetes-associated autoantigen human glutamic acid decarboxylase (hGAD65). BMC Biotechnol 8(1):87. https://doi.org/10.1186/1472-6750-8-87

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • WHO (2016) A global brief on hypertension [WWW Document], n.d. URL http://www.who.int/cardiovascular_diseases/publications/global_brief_hypertension/en/. Accessed 14 Apr 2016

  • Yabuta M, Suzuki Y, Ohsuye K (1995) Hyperproduction of a recombinant fusion protein of Staphylococcus aureus V8 protease in Escherichia coli and its processing by OmpT protease to release an active V8 protease derivative. Appl Microbiol Biotechnol 42:703–708

    Article  PubMed  CAS  Google Scholar 

  • Yamada Y, Matoba N, Usui H, Onishi K, Yoshikawa M (2002) Design of a highly potent anti-hypertensive peptide based on ovokinin(2–7). Biosci Biotechnol Biochem 66:1213–1217

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto N, Ejiri M, Mizuno S (2003) Biogenic peptides and their potential use. Curr Pharm Des 9:1345–1355

    Article  PubMed  CAS  Google Scholar 

  • Yang L, Tada Y, Masayuki P, Yamamoto HZ, Masaaki Y, Takaiwa F (2006) A transgenic rice seed accumulating an anti-hypertensive peptide reduces the blood pressure of spontaneously hypertensive rats. FEBS Lett 580:3315–3320

    Article  PubMed  CAS  Google Scholar 

  • Zhuo JL, Ferrao FM, Zheng Y, Li XC (2013) New frontiers in the intrarenal renin angiotensin system: a critical review of classical and new paradigms. Front Endocr 4:166

    Article  Google Scholar 

Download references

Funding

This work was supported by the projects: Science Immersion 2015 and 2016 and FAI 2016 UASLP to RESG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruth Elena Soria-Guerra.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carrizalez-López, C., González-Ortega, O., Ochoa-Méndez, C.E. et al. Expression of multiple antihypertensive peptides as a fusion protein in the chloroplast of Chlamydomonas reinhardtii . J Appl Phycol 30, 1701–1709 (2018). https://doi.org/10.1007/s10811-017-1339-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-017-1339-4

Keywords

Navigation