Skip to main content
Log in

A new subarctic strain of Tetradesmus obliquus—part I: identification and fatty acid profiling

  • 6th Congress of the International Society for Applied Phycology
  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

We isolated a new subarctic strain Tetradesmus obliquus IPPAS S-2023 (Scenedesmaceae, Chlorophyceae) from rock baths in the White Sea. To verify its taxonomic assignment, internal transcribed spacer 2 (ITS2) of the strain was sequenced and its secondary structure was compared with predicted ITS2 secondary structures of Scenedesmaceae. The analysis of the ITS2 made it possible to assign the new strain IPPAS S-2023 to the species T. obliquus. The ultrastructural studies and energy-dispersive X-ray spectroscopy (EDX) analysis revealed a marked accumulation of vacuolar inclusions enriched in phosphorus and nitrogen (N) as well as cytoplasmiс oil bodies. Most of predicted properties of biodiesel derived from the fatty acids profile of the strain grown in the N-free medium complied with the requirements of European and American standards. The results suggest that the new subarctic strain T. obliquus IPPAS S-2023 is a promising candidate for nutrients biosequestration and for biodiesel production. In a companion paper, we assess its biomass production capability and suitability and demonstrated suitability of IPPAS S-2023 as a reference strain for studies on elevated CO2 stress effects selection of carbon dioxide-tolerant microalgae by comparison with a CO2-tolerant strain IPPAS S-2014.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aldrich J (1997) RA Fisher and the making of maximum likelihood 1912-1922. Stat Sci 12:162–176

    Article  Google Scholar 

  • Altekar G, Dwarkadas S, Huelsenbeck JP, Ronquist F (2004) Parallel metropolis coupled Markov chain Monte Carlo for Bayesian phylogenetic inference. Bioinformatics 20:407–415

    Article  CAS  PubMed  Google Scholar 

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • An S, Friedl T, Hegewald E (1999) Phylogenetic relationships of Scenedesmus and Scenedesmus like coccoid green algae as inferred from ITS2 rDNA sequence comparisons. Plant Biol 1:418–428

    Article  Google Scholar 

  • Bohutskyi P, Liu K, Nasr LK, Byers N, Rosenberg JN, Oyler GA, Betenbaugh MJ, Bouwer EJ (2015) Bioprospecting of microalgae for integrated biomass production and phytoremediation of unsterilized wastewater and anaerobic digestion centrate. Appl Microbiol Biotechnol 99:6139–6154

    Article  CAS  PubMed  Google Scholar 

  • Breuer G, Lamers PP, Martens DE, Draaisma RB, Wijffels RH (2012) The impact of nitrogen starvation on the dynamics of triacylglycerol accumulation in nine microalgae strains. Bioresour Technol 124:217–226

    Article  CAS  PubMed  Google Scholar 

  • Breuer G, Lamers PP, Janssen M, Wijffels RH, Martens DE (2015) Opportunities to improve the areal oil productivity of microalgae. Bioresour Technol 186:294–302

    Article  CAS  PubMed  Google Scholar 

  • Carreres BM, de Jaeger L, Springer J, Barbosa MJ, Breuer G, van den End EJ, Kleinegris DMM, Schäffers I, Wolbert EJH, Zhang H, Lamers PP (2017) Draft genome sequence of the oleaginous green alga Tetradesmus obliquus UTEX 393. Genome Announc 5:e01449–e01416

    Article  PubMed  PubMed Central  Google Scholar 

  • Cembella AD, Antia NJ, Harrison PJ (1982) The utilization of inorganic and organic phosphorous compounds as nutrients by eukaryotic microalgae: a multidisciplinary perspective: part I. Crit Rev Microbiol 10:317–391

    Article  Google Scholar 

  • Chekanov K, Lobakova E, Selyakh I, Semenova L, Sidorov R, Solovchenko A (2014) Accumulation of astaxanthin by a new Haematococcus pluvialis strain BM1 from the White Sea coastal rocks (Russia). Mar Drugs 12:4504–4520

    Article  PubMed  PubMed Central  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    Article  CAS  PubMed  Google Scholar 

  • Chokshi K, Pancha I, Trivedi K, George B, Maurya R, Ghosh A, Mishra S (2015) Biofuel potential of the newly isolated microalgae Acutodesmus dimorphus under temperature induced oxidative stress conditions. Bioresour Technol 180:162–171

    Article  CAS  PubMed  Google Scholar 

  • Coleman AW (2003) ITS2 is a double-edged tool for eukaryote evolutionary comparisons. Trends Genet 19:370–375

    Article  CAS  PubMed  Google Scholar 

  • Coleman AW, Suarez A, Goff LJ (1994) Molecular delineation of species and syngens in volvocacean green algae (Chlorophyta). J Phycol 30:80–90

    Article  CAS  Google Scholar 

  • Dunn R, Moser B (2010) Cold weather properties and performance of biodiesel. In: Knothe G, Krahl J, Van Gerpen J (eds) The biodiesel handbook. AOCS Press, Urbana, pp 147–203

    Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Escapa C, Coimbra RN, Paniagua S, García AI, Otero M (2017) Comparison of the culture and harvesting of Chlorella vulgaris and Tetradesmus obliquus for the removal of pharmaceuticals from water. J Appl Phycol 29:1179–1193

    Article  CAS  Google Scholar 

  • Fawley MW, Fawley KP, Hegewald E (2011) Taxonomy of Desmodesmus serratus (Chlorophyceae, Chlorophyta) and related taxa on the basis of morphological and DNA sequence data. Phycologia 50:23–56

    Article  CAS  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  PubMed  Google Scholar 

  • Ferrigo D, Galla G, Sforza E, Morosinotto T, Barcaccia G, Berrini CC (2015) Biochemical characterization and genetic identity of an oil-rich Acutodesmus obliquus isolate. J Appl Phycol 27:149–161

    Article  CAS  Google Scholar 

  • Folch J, Lees M, Sloane-Stanley G (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509

    CAS  PubMed  Google Scholar 

  • Gangl D, Zedler JA, Rajakumar PD, Martinez EMR, Riseley A, Włodarczyk A, Purton S, Sakuragi Y, Howe CJ, Jensen PE, Robinson C (2015) Biotechnological exploitation of microalgae. J Exp Bot 66:6975–6990

    Article  CAS  PubMed  Google Scholar 

  • Goodson C, Roth R, Wang ZT, Goodenough U (2011) Structural correlates of cytoplasmic and chloroplast lipid body synthesis in Chlamydomonas reinhardtii and stimulation of lipid body production with acetate boost. Eukaryot Cell 10:1592–1606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gorelova O, Baulina O, Solovchenko A, Selyakh I, Chivkunova O, Semenova L, Scherbakov P, Burakova O, Lobakova E (2015) Coordinated rearrangements of assimilatory and storage cell compartments in a nitrogen-starving symbiotic chlorophyte cultivated under high light. Arch Microbiol 197:181–195

    Article  CAS  PubMed  Google Scholar 

  • Hegewald E, Wolf M (2003) Phylogenetic relationships of Scenedesmus and Acutodesmus (Chlorophyta, Chlorophyceae) as inferred from 18S rDNA and ITS-2 sequence comparisons. Plant Syst Evol 241:185–191

    Article  Google Scholar 

  • Hegewald E, Bock C, Krienitz L (2013) A phylogenetic study on Scenedesmaceae with the description of a new species of Pectinodesmus and the new genera Verrucodesmus and Chodatodesmus (Chlorophyta, Chlorophyceae). Fottea 13:149–164

    Article  Google Scholar 

  • Hoshina R (2014) DNA analyses of a private collection of microbial green algae contribute to a better understanding of microbial diversity. BMC Res Notes 7:592

    Article  PubMed  PubMed Central  Google Scholar 

  • Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54:621–639

    Article  CAS  PubMed  Google Scholar 

  • Huelsenbeck JP, Larget B, Alfaro ME (2004) Bayesian phylogenetic model selection using reversible jump Markov chain Monte Carlo. Mol Biol Evol 21:1123–1133

    Article  CAS  PubMed  Google Scholar 

  • Johnson JL, Fawley MW, Fawley KP (2007) The diversity of Scenedesmus and Desmodesmus (Chlorophyceae) in Itasca State Park, Minnesota, USA. Phycologia 46:214–229

    Article  Google Scholar 

  • Kaplan-Levy RN, Alster-Gloukhovski A, Benyamini Y, Zohary T (2016) Lake Kinneret phytoplankton: integrating classical and molecular taxonomy. Hydrobiologia 764:283–302

    Article  CAS  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  CAS  PubMed  Google Scholar 

  • Koetschan C, Hackl T, Müller T, Wolf M, Förster F, Schultz J (2012) ITS2 database IV: interactive taxon sampling for internal transcribed spacer 2 based phylogenies. Mol Phylogenet Evol 63:585–588

    Article  CAS  PubMed  Google Scholar 

  • Krienitz L, Bock C (2012) Present state of the systematics of planktonic coccoid green algae of inland waters. Hydrobiologia 698:295–326

    Article  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 70 for bigger datasets. Mol Biol Evol 33:1870–1874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lewis LA, Flechtner VR (2004) Cryptic species of Scenedesmus (Chlorophyta) from desert soil communities of western North America. J Phycol 40:1127–1137

    Article  Google Scholar 

  • Li L, Cui J, Liu Q, Ding Y, Liu J (2015) Screening and phylogenetic analysis of lipid-rich microalgae. Algal Res 11:381–386

    Article  Google Scholar 

  • Lürling M (2003) Phenotypic plasticity in the green algae Desmodesmus and Scenedesmus with special reference to the induction of defensive morphology. Ann Limnol 39:85–101

    Article  Google Scholar 

  • Mandal S, Mallick N (2009) Microalga Scenedesmus obliquus as a potential source for biodiesel production. Appl Microbiol Biotechnol 84:281–291

    Article  CAS  PubMed  Google Scholar 

  • Merzlyak M, Solovchenko A, Pogosyan S (2005) Optical properties of rhodoxanthin accumulated in Aloe arborescens Mill. leaves under high-light stress with special reference to its photoprotective function. Photochem Photobiol Sci 4:333–340

    Article  CAS  PubMed  Google Scholar 

  • Nei M, Kumar S (2000) Molecular evolution and phylogenetics. Oxford University Press, New York

    Google Scholar 

  • Pittman JK, Dean AP, Osundeko O (2011) The potential of sustainable algal biofuel production using wastewater resources. Bioresour Technol 102:17–25

    Article  CAS  PubMed  Google Scholar 

  • Reynolds E (1963) The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol 17:208–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY (1979) Generic assignments strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111:1–61

    Google Scholar 

  • Ronquist F, Teslenko M, Van Der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542

    Article  PubMed  PubMed Central  Google Scholar 

  • Rosenberg JN, Kobayashi N, Barnes A, Noel EA, Betenbaugh MJ, Oyler GA (2014) Comparative analyses of three Chlorella species in response to light and sugar reveal distinctive lipid accumulation patterns in the microalga C. sorokiniana. PLoS One 9:e92460

    Article  PubMed  PubMed Central  Google Scholar 

  • Ruiz-Marin A, Mendoza-Espinosa LG, Stephenson T (2010) Growth and nutrient removal in free and immobilized green algae in batch and semi-continuous cultures treating real wastewater. Bioresour Technol 101:58–64

    Article  CAS  PubMed  Google Scholar 

  • Rzhetsky A, Nei M (1992) A simple method for estimating and testing minimum-evolution trees. Mol Biol Evol 9:945–967

    CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Sarwa P, Verma SK (2013) Decolourization of Orange G dye by microalgae Acutodesmus obliquus strain PSV2 isolated from textile industrial site. Int J Appl Sci Biotechnol 1:247–252

    Article  CAS  Google Scholar 

  • Sciuto K, Lewis LA, Verleyen E, Moro I, La Rocca N (2015) Chodatodesmus australis sp. nov. (Scenedesmaceae, Chlorophyta) from Antarctica, with the emended description of the genus Chodatodesmus, and circumscription of Flechtneria rotunda gen. et sp. nov. J Phycol 51:1172–1188

    Article  CAS  PubMed  Google Scholar 

  • Shebanova A, Ismagulova T, Solovchenko A, Baulina O, Lobakova E, Ivanova A, Moiseenko A, Shaitan K, Polshakov V, Nedbal L, Gorelova O (2017) Versatility of the green microalga cell vacuole function as revealed by analytical transmission electron microscopy. Protoplasma 254:1323–1340

    Article  CAS  PubMed  Google Scholar 

  • Silambarasan T, Kumaran MB, Kalaichelvan P, Dhandapani R (2014) Antioxidant and antiproliferative activity of the extract from fresh water algae Scenedesmus obliquus RDS01. Int J Adv Sci Eng 1:37–40

    Google Scholar 

  • Smith C, Heyne S, Richter AS, Will S, Backofen R (2010) Freiburg RNA tools: a web server integrating INTARNA EXPARNA and LOCARNA. Nucleic Acids Res 38:W373–W377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Solovchenko AE, Chivkunova OB, Semenova LR, Selyakh IO, Shcherbakov PN, Karpova EA, Lobakova ES (2013) Stress-induced changes in pigment and fatty acid content in the microalga Desmodesmus sp. isolated from a White Sea hydroid. Russ J Plant Physiol 60:313–321

    Article  CAS  Google Scholar 

  • Solovchenko A, Gorelova O, Baulina O, Selyakh I, Semenova L, Chivkunova O, Scherbakov P, Lobakova E (2015) Physiological plasticity of symbiotic Desmodesmus (Chlorophyceae) isolated from taxonomically distant white sea invertibrates Russian. J Plant Physiol 62:653–663

    CAS  Google Scholar 

  • Solovchenko A, Verschoor AM, Jablonowski ND, Nedbal L (2016) Phosphorus from wastewater to crops: an alternative path involving microalgae. Biotechnol Adv 34:550–564

    Article  CAS  PubMed  Google Scholar 

  • Talebi AF, Tabatabaei M, Chisti Y (2014) BiodieselAnalyzer: a user-friendly software for predicting the properties of prospective biodiesel. Biofuel Res J 1:55–57

    Article  CAS  Google Scholar 

  • Tavaré S (1986) Some probabilistic and statistical problems in the analysis of DNA sequences. Lect Math Life Sci 17:57–86

    Google Scholar 

  • Thompson G (1996) Lipids and membrane function in green algae. Biochim Biophys Acta Lipids Lipid Metab 1302:17–45

    Article  Google Scholar 

  • Trentacoste E, Martinez A, Zenk T (2015) The place of algae in agriculture: policies for algal biomass production. Photosynth Res 123:305–315

    Article  CAS  PubMed  Google Scholar 

  • Tsarenko P, Petlevanny O (2001) Addition to the diversity of algae of Ukraine. Algologia Suppl:1–130

  • Van Hannen EJ, Fink P, Lürling M (2002) A revised secondary structure model for the internal transcribed spacer 2 of the green algae Scenedesmus and Desmodesmus and its implication for the phylogeny of these algae. Eur J Phycol 37:203–208

    Article  Google Scholar 

  • Wacker A, Piepho M, Harwood JL, Guschina IA, Arts MT (2016) Light-induced changes in fatty acid profiles of specific lipid classes in several freshwater phytoplankton species. Front Plant Sci 7:264

    Article  PubMed  PubMed Central  Google Scholar 

  • Wijffels RH, Barbosa MJ (2010) An outlook on microalgal biofuels. Science 329:796–799

    Article  CAS  PubMed  Google Scholar 

  • Will S, Joshi T, Hofacker IL, Stadler PF, Backofen R (2012) LocARNA-P: accurate boundary prediction and improved detection of structural RNAs. RNA 18:900–914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolf M, Friedrich J, Dandekar T, Müller T (2005) CBCAnalyzer: inferring phylogenies based on compensatory base changes in RNA secondary structures. In Silico Biol 5:291–294

    CAS  PubMed  Google Scholar 

  • Wynne MJ, Hallan JK (2015) Reinstatement of Tetradesmus G.M. Smith (Sphaeropleales, Chlorophyta). Feddes Rep 126:83–86

    Article  Google Scholar 

  • Yeh KL, Chang JS (2011) Nitrogen starvation strategies and photobioreactor design for enhancing lipid content and lipid production of a newly isolated microalga Chlorella vulgaris ESP-31: implications for biofuels. Biotechnol J 6:1358–1366

    Article  CAS  PubMed  Google Scholar 

  • Yuan C, Zheng YL, Zhang WL, He R, Fan Y, Hu GR, Li FL (2017) Lipid accumulation and anti-rotifer robustness of microalgal strains isolated from eastern China. J Appl Phycol. https://doi.org/10.1007/s10811-017-1167-6

    Article  CAS  Google Scholar 

  • Zhou X, Yuan S, Chen R, Ochieng RM (2015) Sustainable production of energy from microalgae: review of culturing systems, economics and modelling. J Renew Sust Energy 7:012701

    Article  Google Scholar 

  • Zou S, Fei C, Wang C, Gao Z, Bao Y, He M, Wang C (2016a) How DNA barcoding can be more effective in microalgae identification: a case of cryptic diversity revelation in Scenedesmus (Chlorophyceae). Sci Rep 6:36822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zou S, Fei C, Song J, Bao Y, He M, Wang C (2016b) Combining and comparing coalescent, distance and character-based approaches for barcoding microalgaes: a test with Chlorella-like species (Chlorophyta). PLoS One 11:e0153833

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Financial support of Russian Ministry of Science and Education (grant 14.616.21.0080) is gratefully acknowledged. The ultrastructure studies were carried out at the User Facilities Center of M.V. Lomonosov Moscow State University. The authors are grateful to Dr. Olga A. Kudryavtseva for isolation of the T. obliquus strain IPPAS S-2023 from rock baths. Assistance of Dr. Roman A. Sidorov with fatty acid analysis is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexei Solovchenko.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Fig. S1

Secondary structure of the internal transcribed spacer 2 (ITS2) of the nuclear ribosomal gene cluster of the strain IPPAS-2023 predicted based on KX530785.1 sequence. The helixes are designated as I, II, III and IV. The substitutions between KX530785.1 versus its closest homologs found by BLAST and their position in the KX530785.1/ITS2-fragment are shown in the figure. (PDF 30 kb)

Fig. S2

Distribution of isolated and identified representatives of Tetradesmus obluquus by the countries (PNG 1627 kb)

Table S1

(PDF 198 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ismagulova, T., Chekanov, K., Gorelova, O. et al. A new subarctic strain of Tetradesmus obliquus—part I: identification and fatty acid profiling. J Appl Phycol 30, 2737–2750 (2018). https://doi.org/10.1007/s10811-017-1313-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-017-1313-1

Keywords

Navigation