Skip to main content
Log in

The impact of culture conditions on growth and metabolomic profiles of freshwater cyanobacteria

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Cultured cyanobacteria produce secondary metabolites with a wide range of biological activities and are an important source of natural products. In the context of secondary metabolite discovery, microbial culture conditions are expected to support optimum growth, induce maximum chemical diversity, and be suitable for the majority of cyanobacterial strains. We investigated the effect of nitrate and phosphate on biomass production and metabolomic profiles of three filamentous freshwater cyanobacterial strains: cf. Oscillatoria sp. UIC 10045, Scytonema sp. UIC 10036, and Nostoc sp. UIC 10110. A standardized inoculation procedure allowed for the assessment of cell mass production. Dried cyanobacterial cell mass was extracted and analyzed by liquid chromatography coupled with high-resolution mass spectrometry, followed by comparative metabolomics analysis using XCMS Online. Results showed that low nitrate media significantly reduced cell mass production for all three strains. Low nitrate also induced production of primary metabolites (heterocyst glycolipids) in strains UIC 10036 and UIC 10110. Changes in phosphate levels affected each strain differently. Strain UIC 10110 showed a significant increase in production of merocyclophane C when cultivated in low phosphate, while strain UIC 10036 displayed higher production of tolytoxin under high phosphate. Additionally, these experiments led to the identification of a potentially new peptide produced by strain UIC 10036.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Acreman J (1994) Algae and cyanobacteria: isolation, culture and long-term maintenance. J Ind Microbiol 13:193–194

    Article  Google Scholar 

  • Bácsi I, Vasas G, Surányi G, M-Hamvas M, Máthé C, Tóth E, Grigorszky I, Gáspár A, Tóth S, Borbely G (2006) Alteration of cylindrospermopsin production in sulfate- or phosphate-starved cyanobacterium Aphanizomenon ovalisporum. FEMS Microbiol Lett 259:303–310

  • Baker DB, Confesor R, Ewing DE, Johnson LT, Kramer JW, Merryfield BJ (2014) Phosphorus loading to Lake Erie from the Maumee, Sandusky and Cuyahoga rivers: the importance of bioavailability. J Great Lakes Res 40:502–517

    Article  CAS  Google Scholar 

  • Bauersachs T, Compaoré J, Hopmans EC, Stal LJ, Schouten S, Damsté JS (2009a) Distribution of heterocyst glycolipids in cyanobacteria. Phytochemistry 70:2034–2039

    Article  CAS  PubMed  Google Scholar 

  • Bauersachs T, Hopmans EC, Compaoré J, Stal LJ, Schouten S, Damsté JS (2009b) Rapid analysis of long-chain glycolipids in heterocystous cyanobacteria using high-performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry. Rapid Commun Mass Spectrom 23:1387–1394

    Article  CAS  PubMed  Google Scholar 

  • Beaulieu M, Pick F, Palmer M, Watson S, Winter J, Zurawell R, Gregory-Eaves I, Prairie Y (2014) Comparing predictive cyanobacterial models from temperate regions. Can J FishAquat Sci 71:1830–1839

  • Berman-Frank I, Lundgren P, Falkowski P (2003) Nitrogen fixation and photosynthetic oxygen evolution in cyanobacteria. Res Microbiol 154:157–164

    Article  CAS  PubMed  Google Scholar 

  • Briand E, Bormans M, Gugger M, Dorrestein PC, Gerwick WH (2016) Changes in secondary metabolic profiles of Microcystis aeruginosa strains in response to intraspecific interactions. Environ Microbiol 18:384–400

  • Bui HTN, Jansen R, Pham HTL, Mundt S (2007) Carbamidocyclophanes A−E, chlorinated paracyclophanes with cytotoxic and antibiotic activity from the Vietnamese cyanobacterium Nostoc sp. J Nat Prod 70:499–503

  • Burford MA, Davis TW, Orr PT, Sinha R, Willis A, Neilan BA (2014) Nutrient-related changes in the toxicity of field blooms of the cyanobacterium Cylindrospermopsis raciborskii. FEMS Microbiol Ecol 89:135–148

  • Carr NG, Whitton BA (1982) The biology of cyanobacteria. Blackwell, Oxford

    Google Scholar 

  • Chlipala G, Mo S, Carcache de Blanco EJ, Ito A, Bazarek S, Orjala J (2009) Investigation of antimicrobial and protease-inhibitory activity from cultured cyanobacteria. Pharm Biol 47:53–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chlipala GE, Sturdy M, Krunic A, Lantvit DD, Shen Q, Porter K, Swanson SM, Orjala J (2010) Cylindrocyclophanes with proteasome inhibitory activity from the cyanobacterium Nostoc sp. J Nat Prod 73:1529–1537

  • Chlipala GE, Mo S, Orjala J (2011) Chemodiversity in freshwater and terrestrial cyanobacteria—a source for drug discovery. Curr Drug Targets 12:1654–1673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conley DJ, Paerl HW, Howarth RW, Boesch DF, Seitzinger SP, Havens KE, Lancelot C, Likens GE (2009) Controlling eutrophication: nitrogen and phosphorus. Science 323:1014–1015

    Article  CAS  PubMed  Google Scholar 

  • Dolman AM, J Rücker J, Pick FR, Fastner J, Rohrlack T, Mischke U, Wiedner C, Bertilsson S (2012) Cyanobacteria and cyanotoxins: the influence of nitrogen versus phosphorus. PLoS One 7(6):e38757

  • Doronina SO, Toki BE, Torgov MY, Mendelsohn BA, Cerveny CG, Chace DF, DeBlanc RL, Gearing RP, Bovee TD, Siegall CB, Francisco JA, Wahl AF, Meyer DL, Senter PD (2003) Development of potent monoclonal antibody auristatin conjugates for cancer therapy. Nat Biotechnol 21:778–784

    Article  CAS  PubMed  Google Scholar 

  • El-Elimat T, Zhang X, Jarjoura D, Moy FJ, Orjala J, Kinghorn AD, Pearce CJ, Oberlies NH (2012) Chemical diversity of metabolites from fungi, cyanobacteria, and plants relative to FDA-approved anticancer agents. ACS Med Chem Lett 3:645–649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Falch BS, König GM, Wright AD, Sticher O, Angerhofer CK, Pezzuto JM, Bachmann H (1995) Biological activities of cyanobacteria: evaluation of extracts and pure compounds. Planta Med 61:321–328

    Article  CAS  PubMed  Google Scholar 

  • Fay P (1992) Oxygen relations of nitrogen fixation in cyanobacteria. Microbiol Rev 56:340–373

    CAS  PubMed  PubMed Central  Google Scholar 

  • Flores E, Herrero A (2010) Compartmentalized function through cell differentiation in filamentous cyanobacteria. Nat Rev Microbiol 8:39–50

    Article  CAS  PubMed  Google Scholar 

  • Flores E, López-Lozano A, Herrero A (2015) Nitrogen fixation in the oxygenic phototrophic prokaryotes (cyanobacteria): the fight against oxygen. Biol Nitrogen Fixat 2:879–890

    Article  Google Scholar 

  • Gambacorta A, Pagnotta E, Romano I, Sodano G, Trincone A (1998) Heterocyst glycolipids from nitrogen-fixing cyanobacteria other than Nostocaceae. Phytochemistry:48, 801–805

  • Heath M, Wood SA, Young RG, Ryan KG (2016) The role of nitrogen and phosphorus in regulating Phormidium sp. (cyanobacteria) growth and anatoxin production. FEMS Microbiol Ecol 92:fiw021. https://doi.org/10.1093/femsec/fiw021

  • Herrero A, Flores E (2008) The cyanobacteria: molecular biology, genomics, and evolution. Caister Academic Press, Norfolk

    Google Scholar 

  • Holl CM, Montoya JP (2005) Interactions between nitrate uptake and nitrogen fixation in continuous cultures of the marine diazotroph Trichodesmium (cyanobacteria). J Phycol 41:1178–1183

  • Hong S-J, Lee C-G (2008) Statistical optimization of culture media for production of phycobiliprotein by Synechocystis sp PCC 6701. Biotechnol Bioprocess Eng 13:491–498

  • Huang S, Chen L, Te R, Qiao J, Wang J, Zhang W (2013) Complementary iTRAQ proteomics and RNA-seq transcriptomics reveal multiple levels of regulation in response to nitrogen starvation in Synechocystis sp. PCC 6803. Mol BioSyst 9:2565–2574

  • Johnson TJ, Jahandideh A, Isaac IC, Baldwin EL, Muthukumarappan K, Zhou R, Gibbons WR (2017) Determining the optimal nitrogen source for large-scale cultivation of filamentous cyanobacteria. J Appl Phycol 29:1–13

    Article  CAS  Google Scholar 

  • Kang H-S, Santarsiero BD, Kim H, Krunic A, Shen Q, Swanson SM, Chai H, Kinghorn AD, Orjala J (2012) Merocyclophanes A and B, antiproliferative cyclophanes from the cultured terrestrial cyanobacterium Nostoc sp. Phytochemistry 79:109–115

  • Kilroy C, Bothwell ML (2012) Didymosphenia geminata growth rates and bloom formation in relation to ambient dissolved phosphorus concentration. Freshw Biol 57:641–653

    Article  CAS  Google Scholar 

  • Kuffner IB, Paul VJ (2001) Effects of nitrate, phosphate and iron on the growth of macroalgae and benthic cyanobacteria from Cocos lagoon, Guam. Mar Ecol Prog Ser 222:63–72

    Article  CAS  Google Scholar 

  • Lehtimäki J, Moisander P, Sivonen K, Kononen K (1997) Growth, nitrogen fixation, and nodularin production by two Baltic Sea cyanobacteria. Appl Environ Microbiol 63:1647–1656

    PubMed  PubMed Central  Google Scholar 

  • Luesch H, Moore RE, Paul VJ, Mooberry SL, Corbett TH (2001) Isolation of dolastatin 10 from the marine cyanobacterium Symploca species VP642 and total stereochemistry and biological evaluation of its analogue symplostatin 1. J Nat Prod 64:907–910

  • Luo S, Kang HS, Krunic A, Chlipala GE, Cai G, Chen W-L, Franzblau SG, Swanson SM, Orjala J (2014) Carbamidocyclophanes F and G with anti-Mycobacterium tuberculosis activity from the cultured freshwater cyanobacterium Nostoc sp. Tetrahedron Lett 55:686–689

  • Luo S, Kang H-S, Krunic A, Chen WL, Yang J, Woodard JL, Fuchs JR, Hyun Cho S, Franzblau SG, Swanson SM, Orjala J (2015) Trichormamides C and D, antiproliferative cyclic lipopeptides from the cultured freshwater cyanobacterium cf. Oscillatoria sp. UIC 10045. Bioorg Med Chem 23:3153–3162

  • May DS, Chen W-L, Lantvit DD, Zhang X, Krunic A, Burdette JE, Eustaquio A, Orjala J (2017) Merocyclophanes C and D from the cultured freshwater cyanobacterium Nostoc sp. (UIC 10110). J Nat Prod 80:1073–1080

  • Mazur-Marzec H, Żeglińska L, Pliński M (2005) The effect of salinity on the growth, toxin production, and morphology of Nodularia spumigena isolated from the Gulf of Gdańsk, southern Baltic Sea. J Appl Phycol 17:171–179.

  • Mian P, Heilmann J, Bürgi H-R, Sticher O (2003) Biological screening of terrestrial and freshwater cyanobacteria for antimicrobial activity, brine shrimp lethality, and cytotoxicity. Pharm Biol 41:243–247

    Article  Google Scholar 

  • Miyazaki K, Kobayashi M, Natsume T, Gondo M, Mikami T, Sakakibara K, Tsukagoshi S (1995) Synthesis and antitumor activity of novel Dolastatin 10 analogs. Chem Pharm Bull (Tokyo) 43:1706–1718

    Article  CAS  Google Scholar 

  • Monchamp M-E, Pick FR, Beisner BE, Maranger R, Neilan B (2014) Nitrogen forms influence microcystin concentration and composition via changes in cyanobacterial community structure. PLoS One 9(1):e85573

  • Moskowitz CH, Nademanee A, Masszi T et al (2015) Brentuximab vedotin as consolidation therapy after autologous stem-cell transplantation in patients with Hodgkin’s lymphoma at risk of relapse or progression (AETHERA): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 385:1853–1862

    Article  CAS  PubMed  Google Scholar 

  • Mowe MAD, Abbas F, Porojan C, Mitrovic SM, Lim RP, Furey A, Yeo DCJ (2016) Roles of nitrogen and phosphorus in growth responses and toxin production (using LC-MS/MS) of tropical Microcystis ichthyoblabe and M. flos-aquae. J Appl Phycol 28:1543–1552

  • Orjala J, Oberlies N, Pearce C, Swanson SM, Kinghorn D (2011) Discovery of potential anticancer agents from aquatic cyanobacteria, filamentous fungi, and tropical plants. In: Bioactive compounds from natural sources, Second Edition. CRC Press, pp 37–64

  • Patterson GML, Bolis CM (1993) Regulation of scytophycin accumulation in cultures of Scytonema ocellatum. I. Physical factors. Appl Microbiol Biotechnol 40:375–381

  • Patterson GML, Bolis CM (1995) Regulation of scytophycin accumulation in cultures of Scytonema ocellatum. II. Nutrient requirements. Appl Microbiol Biotechnol 43:692–700

  • Pettit GR, Kamano Y, Herald CL, Tuinman AA, Boettner FE, Kizu H, Schmidt JM, Baczynskyj L, Tomer K, Bonterns RJ (1987) The isolation and structure of a remarkable marine animal antineoplastic constituent: Dolastatin 10. J Am Chem Soc 109:6883–6885

    Article  CAS  Google Scholar 

  • Preisitsch M, Harmrolfs K, Pham HT, Heiden SE, Füssel A, Wiesner C, Pretsch A, Swiatecka-Hagenbruch M, Niedermeyer TH, Müller R, Mundt S (2015) Anti-MRSA-acting carbamidocyclophanes H–L from the Vietnamese cyanobacterium Nostoc sp. CAVN2. J Antibiot (Tokyo) 68:165–177

  • Preisitsch M, Bui HTN, Bäcker C, Mundt S (2016a) Impact of temperature on the biosynthesis of cytotoxically active carbamidocyclophanes A–E in Nostoc sp. CAVN10. J Appl Phycol 28:951–963

  • Preisitsch M, Heiden S, Beerbaum M et al (2016b) Effects of halide ions on the carbamidocyclophane biosynthesis in Nostoc sp. CAVN2. Mar Drugs 14:21

    Article  PubMed  PubMed Central  Google Scholar 

  • Rapala J, Sivonen K, Luukkainen R, Niemelä SI (1993) Anatoxin-a concentration in Anabaena and Aphanizomenon under different environmental conditions and comparison of growth by toxic and non-toxic Anabaena-strains—a laboratory study. J Appl Phycol 5:581–591

  • Ray S, Bagchi SN (2002) Nutrients and pH regulate algicide accumulation in cultures of the cyanobacterium Oscillatoria laetevirens. New Phytol 149:455–460

  • Repka S, Koivula M, Harjunpä V, Rouhiainen L, Sivonen K (2004) Effects of phosphate and light on growth of and bioactive peptide production by the cyanobacterium Anabaena strain 90 and its anabaenopeptilide mutant. Appl Environ Microbiol 70:4551–4560

  • Rohrlack T, Utkilen H (2007) Effects of nutrient and light availability on production of bioactive anabaenopeptins and microviridin by the cyanobacterium Planktothrix agardhii. Hydrobiologia 583:231–240

  • Schindler DW, Carpenter SR, Chapra SC, Hecky RE, Orihel DM (2016) Reducing phosphorus to Curb Lake eutrophication is a success. Environ Sci Technol 50:8923–8929

    Article  CAS  PubMed  Google Scholar 

  • Silva CSP, Silva-Stenico ME, Fiore MF, de Castro HF, Da Rós PCM (2014) Optimization of the cultivation conditions for Synechococcus sp PCC7942 (cyanobacterium) to be used as feedstock for biodiesel production. Algal Res 3:1–7

  • Singh RK, Tiwari SP, Rai AK, Mohapatra TM (2011) Cyanobacteria: an emerging source for drug discovery. J Antibiot 64:401–412

    Article  CAS  PubMed  Google Scholar 

  • Staub R (1961) Ernährungsphysiologisch-autökologische Untersuchungen an der planktischen Blaualge Oscillatoria rubescens DC. Z Hydrol 23:82–198

  • Stein-Taylor JR, Gantt E (1980) Handbook of phycological methods: developmental and cytological methods. Cambridge University Press, Cambridge

  • Tan LT (2007) Bioactive natural products from marine cyanobacteria for drug discovery. Phytochemistry 68:954–979

    Article  CAS  PubMed  Google Scholar 

  • Tarko T, Duda-Chodak A, Kobus M (2012) Influence of growth medium composition on synthesis of bioactive compounds and antioxidant properties of selected strains of Arthrospira cyanobacteria. Czech J Food Sci 30:258–267

  • Tedesco MA, Duerr EO (1989) Light, temperature and nitrogen starvation effects on the total lipid and fatty acid content and composition of Spirulina platensis UTEX 1928. J Appl Phycol 1:201–209

  • Teikari J, Österholm J, Kopf M, Battchikova N, Wahlsten M, E-m A, Hess WR, Sivonen K (2015) Transcriptomics and proteomics profiling of Anabaena sp. strain 90 under inorganic phosphorus stress. Appl Environ Microbiol 81:5212–5222

  • Tidgewell K, Clark BR, Gerwick WH (2010) The natural products chemistry of cyanobacteria. In: Liu H-W, Mander L (eds) Comprehensive natural products {II}. Elsevier, Oxford, pp 141–188

    Chapter  Google Scholar 

  • Vico P, Aubriot L, Martigani F, Rigamonti N, Bonilla S, Piccini C (2016) Influence of nitrogen availability on the expression of genes involved in the biosynthesis of saxitoxin and analogs in Cylindrospermopsis raciborskii. Harmful Algae 56:37–43

  • Wang M, Zhang J, He S, Yan X (2017) A review study on macrolides isolated from cyanobacteria. Mar Drugs 15:126

    Article  PubMed Central  Google Scholar 

  • Wood SA, Borges H, Puddick J, Biessy AJ, Hawes I, Dietrich DR, Hamilton DP (2017) Contrasting cyanobacterial communities and microcystin concentrations in summers with extreme weather events: insights into potential effects of climate change. Hydrobiologia 785:71–89

    Article  CAS  Google Scholar 

  • Wörmer L, CirÉs S, VelÁzquez D, Quesada A, Hinrichs K-U (2012) Cyanobacterial heterocyst glycolipids in cultures and environmental samples: diversity and biomarker potential. Limnol Oceanogr 57:1775–1788

    Article  Google Scholar 

  • Yin Q, Carmichael WW, Evans WR (1997) Factors influencing growth and toxin production by cultures of the freshwater cyanobacterium Lyngbya wollei Farlow ex Gomont. J Appl Phycol 9:55–63

  • Yue D, Peng Y, Yin Q, Xiao L (2015) Proteomic analysis of Microcystis aeruginosa in response to nitrogen and phosphorus starvation. J Appl Phycol 27:1195–1204

Download references

Acknowledgements

We thank Dr. G. E. Chlipala for assisting with experimental design, as well as M. Rush and D. Nosal for their aid with metabolomics analysis and IT-TOF operation. This research was supported by NCI/NIH PO1 CA125066, CAPES/Science without Borders BEX 13055-13-5, and The Office of the Director, National Institutes of Health (OD) National Center for Complementary and Integrative Health (NCCIH) T32AT007533.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jimmy Orjala.

Electronic supplementary material

ESM 1

(DOCX 96 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crnkovic, C.M., May, D.S. & Orjala, J. The impact of culture conditions on growth and metabolomic profiles of freshwater cyanobacteria. J Appl Phycol 30, 375–384 (2018). https://doi.org/10.1007/s10811-017-1275-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-017-1275-3

Keywords

Navigation