Skip to main content

Advertisement

Log in

Heterologous expression of DGAT genes in the marine microalga Tetraselmis chui leads to an increase in TAG content

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Over recent years, there has been continued interest in investigating microalgae as a sustainable and renewable source of biodiesel, and a handful of studies have been devoted to the metabolic engineering of microalgae focusing on microalgal oil. In this study, we have applied a transformation method previously developed in our laboratory for the green microalga Tetraselmis chui to introduce and overexpress independently two diacylglycerol acyltransferase (DGAT) genes, EpDGAT1 from a plant species of the Boraginaceae family, and ScDGAT2 from Saccharomyces cerevisiae. Hundreds of transformed clones were obtained, but the screening was restricted to 50 clones for each DGAT1 and DGAT2 type. Twelve transformed clones were finally selected for their high total fatty acid content, which were re-cultured and re-analyzed to specifically determine their triacylglycerol (TAG) content. Five clones showed TAG contents notably higher than the wild-type (WT) strain, achieving TAG increases from 40% up to 115% of dry weight (mg g−1). These increases are, to the best of our knowledge, the highest reported in microalgae to date and serve as a proof of concept regarding the possibility of using this technology to markedly improve oil content in microalgae or any other product suitable for genetically engineered enhancement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahmad I, Sharma AK, Daniell H, Kumar S (2015) Altered lipid composition and enhanced lipid production in green microalga by introduction of Brassica diacylglycerol acyltransferase 2. Plant Biotech J 13:540–550

  • Alonso DL, Belarbi E-H, Rodriguez-Ruiz J, Segura CI, Gimenez A (1998) Acyl lipids of three microalgae. Phytochemistry 47:1473–1481

    Article  Google Scholar 

  • Anila N, Chandrashekar A, Ravishankar GA, Sarada R (2011) Establishment of Agrobacterium tumefaciens-mediated genetic transformation in Dunaliella bardawil. Eur J Phycol 46:36–44

    Article  CAS  Google Scholar 

  • Apt KE, Kroth-Pancic PG, Grossman AR (1996) Stable nuclear transformation of the diatom Phaeodactylum tricornutum. Mol Gen Genet 252:572–579

    CAS  PubMed  Google Scholar 

  • Beacham TA, Ali ST (2016) Growth dependent silencing and resetting of DGA1 transgene in Nannochloropsis salina. Algal Res 14:65–71

    Article  Google Scholar 

  • Boyle NR, Page MD, Liu B et al (2012) Three acyltransferases and nitrogen-responsive regulator are implicated in nitrogen starvation-induced triacylglycerol accumulation in Chlamydomonas. J Biol Chem 287:15811–15825

  • Breuer G, de Jaeger L, Artus VPG, Martens DE, Springer J, Draaisma RB, Eggink G, Wijffels RH, Lamers PP (2014) Superior triacylglycerol (TAG) accumulation in starchless mutants of Scenedesmus obliquus: (II) evaluation of TAG yield and productivity in controlled photobioreactors. Biotechnol Biofuels 7:70. doi:10.1186/1754-6834-7-70

    Article  PubMed  PubMed Central  Google Scholar 

  • Brown AP, Carnaby S, Brough C, Brazier M, Slabas AR (2002) Limnanthes douglasii lysophosphatidic acid acyltransferases: immunological quantification, acyl selectivity and functional replacement of the Escherichia coli plsC gene. Biochem J 364:795–805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burgal J, Shockey JM, Lu C, Dyer J, Larson T, Graham I, Browse J (2008) Metabolic engineering of hydroxy fatty acid production in plants: RcDGAT2 drives dramatic increases in ricinoleate levels in seed oil. Plant Biotech J 6:819–831

    Article  CAS  Google Scholar 

  • Butaye KMJ, Cammue BP, Delauré SL, De Bolle MFC (2005) Approaches to minimize variation of transgene expression in plants. Mol Breed 16:79–91

    Article  Google Scholar 

  • Cahoon EB, Shockey JM, Dietrich CR, Gidda SK, Mullen RT, Dyer JM (2007) Engineering oilseeds for sustainable production of industrial and nutritional feedstocks: solving bottlenecks in fatty acid flux. Curr Opin Plant Biol 10:236–244

    Article  CAS  PubMed  Google Scholar 

  • Cerutti H, Ma X, Msanne J, Repas T (2011) RNA-mediated silencing in algae: biological roles and tools for analysis of gene function. Eukaryot Cell 10:1164–1172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cha TS, Yee W, Aziz A (2012) Assessment of factors affecting Agrobacterium-mediated genetic transformation of the unicellular green alga, Chlorella vulgaris. World J Microbiol Biotechnol 28:1771–1779

    Article  CAS  PubMed  Google Scholar 

  • Chen JE, Smith AG (2012) A look at diacylglycerol acyltransferases (DGATs) in algae. J Biotechnol 162:28–39

    Article  CAS  PubMed  Google Scholar 

  • Chen GQ, Turner C, He X, Nguyen T, McKeon TA, Laudencia-Chingcuanco D (2007) Expression profiles of genes involved in fatty acid and triacylglycerol synthesis in castor bean (Ricinus communis L.) Lipids 42:263–274

    Article  CAS  PubMed  Google Scholar 

  • Chen C-X, Sun Z, Cao H-S, Fang F-L, Ouyang L-L, Zhou Z-G (2015) Identification and characterization of three genes encoding acyl-CoA: diacylglycerol acyltransferase (DGAT) from the microalga Myrmecia incisa Reisigl. Algal Res 12:280–288

    Article  Google Scholar 

  • Chen C-Y, Kao A-L, Tsai Z-C, Chow TJ, Chang HY, Zhao XQ, Chen PT, Su HY, Chang JS (2016) Expression of type 2 diacylglycerol acyltransferase gene DGTT1 from Chlamydomonas reinhardtii enhances lipid production in Scenedesmus obliquus. Biotechnol J 11:336–344

    Article  CAS  PubMed  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    Article  CAS  PubMed  Google Scholar 

  • Chungjatupornchai W, Watcharawipas A (2015) Diacylglycerol acyltransferase type 2 cDNA from the oleaginous microalga Neochloris oleoabundans: cloning and functional characterization. J Appl Phycol 27:1499–1507

    Article  CAS  Google Scholar 

  • Chungjatupornchai W, Kitraksa P, Fa-aroonsawat S (2016) Stable nuclear transformation of the oleaginous microalga Neochloris oleoabundans by electroporation. J Appl Phycol 28:191–198

    Article  CAS  Google Scholar 

  • Dautor Y, Úbeda-Mínguez P, Chileh T, García-Maroto F, Alonso DL (2014) Development of genetic transformation methodologies for an industrially-promising microalga: Scenedesmus almeriensis. Biotechnol Lett 36:2551–2558

    Article  CAS  PubMed  Google Scholar 

  • Deng X-D, Gu B, Li Y-J, Hu X-W, Guo J-C, Fei X-W (2012) The roles of acyl-CoA: diacylglycerol acyltransferase 2 genes in the biosynthesis of triacylglycerols by the green algae Chlamydomonas reinhardtii. Mol Plant 5:945–947

    Article  CAS  PubMed  Google Scholar 

  • Díaz-Santos E, de la Vega M, Vila M, Vigara J, León R (2013) Efficiency of different heterologous promoters in the unicellular microalga Chlamydomonas reinhardtii. Biotechnol Prog 29:319–328

  • Díaz-Santos E, Vila M, Vigara J, León R (2016) A new approach to express transgenes in microalgae and its use to increase the flocculation ability of Chlamydomonas reinhardtii. J Appl Phycol 28:1611–1621

    Article  Google Scholar 

  • Guillard RR, Ryther JH (1962) Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt, and Detonula confervacea (Cleve) Gran. Can J Microbiol 8:229–239

    Article  CAS  PubMed  Google Scholar 

  • Hernández-Torres A, Zapata-Morales AL, Ochoa Alfaro AE, Soria-Guerra RE (2016) Identification of gene transcripts involved in lipid biosynthesis in Chlamydomonas reinhardtii under nitrogen, iron and sulfur deprivation. World J Microbiol Biotechnol 32:1–10

    Article  Google Scholar 

  • Hsieh HJ, Su CH, Chien LJ (2012) Accumulation of lipid production in Chlorella minutissima by triacylglycerol biosynthesis-related genes cloned from Saccharomyces cerevisiae and Yarrowia lipolytica. J Microbiol 50:526–534

    Article  CAS  PubMed  Google Scholar 

  • Ibáñez-Salazar A, Rosales-Mendoza S, Rocha-Uribe A et al (2014) Over-expression of Dof-type transcription factor increases lipid production in Chlamydomonas reinhardtii. J Biotechnol 184:27–38

    Article  PubMed  Google Scholar 

  • Iskandarov U, Sitnik S, Shtaida N, Didi-Cohen S, Leu S, Khozin-Goldberg I, Cohen Z, Boussiba S (2016) Cloning and characterization of a GPAT-like gene from the microalga Lobosphaera incisa (Trebouxiophyceae): overexpression in Chlamydomonas reinhardtii enhances TAG production. J Appl Phycol 28:907–919

    Article  CAS  Google Scholar 

  • Iwai M, Hori K, Sasaki-Sekimoto Y, Shimojima M, Ohta H (2015) Manipulation of oil synthesis in Nannochloropsis strain NIES-2145 with a phosphorus starvation-inducible promoter from Chlamydomonas reinhardtii. Front Microbiol 6:912

    Article  PubMed  PubMed Central  Google Scholar 

  • Jako C, Kumar A, Wei Y, Zou J, Barton DL, Giblin EM, Covello PS, Taylor DC (2001) Seed-specific over-expression of an Arabidopsis cDNA encoding a diacylglycerol acyltransferase enhances seed oil content and seed weight. Plant Physiol 126:861–874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jinkerson RE, Radakovits R, Posewitz MC (2013) Genomic insights from the oleaginous model alga Nannochloropsis gaditana. Bioengineered 4:37–43

    Article  PubMed  PubMed Central  Google Scholar 

  • Kamisaka Y, Kimura K, Uemura H, Yamaoka M (2013) Overexpression of the active diacylglycerol acyltransferase variant transforms Saccharomyces cerevisiae into an oleaginous yeast. Appl Microbiol Biotechnol 95:7345–7355

    Article  Google Scholar 

  • Katavic V, Reed DW, Taylor DC, Giblin EM, Barton DL, Zou J, Mackenzie SL, Covello PS, Kunst L (1995) Alteration of seed fatty acid composition by an ethyl methanesulfonate-induced mutation in Arabidopsis thaliana affecting diacylglycerol acyltransferase activity. Plant Physiol 108:399–409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kates M (1988) Techniques of lipidology. Elsevier Biomedical, Amsterdam

    Google Scholar 

  • Kim HO, Kim HU, Suh MC (2014) Efficiency for increasing seed oil content using WRINKLED1 and DGAT1 under the control of two seed-specific promoters, FAE1 and napin. J Plant Biotechnol 39:242–252

    Article  Google Scholar 

  • Klein-Marcuschamer D, Chisti Y, Benemann JR, Lewis D (2013) A matter of detail: assessing the true potential of microalgal biofuels. Biotechnol Bioeng 110:2317–2322

    Article  CAS  PubMed  Google Scholar 

  • Kochert G (1978) Quantitation of the macromolecular components of microalgae. In: Hellebust J, Craigie S (eds) Handbook of phycological methods. Physiological and biochemical methods. Cambridge University Press, Cambridge, pp 189–195

  • Kroon JT, Wei W, Simon WJ, Slabas AR (2006) Identification and functional expression of a type 2 acyl-CoA:diacylglycerol acyltransferase (DGAT2) in developing castor bean seeds which has high homology to the major triglyceride biosynthetic enzyme of fungi and animals. Phytochemistry 67:2541–2549

    Article  CAS  PubMed  Google Scholar 

  • Kumar SV, Misquitta RW, Reddy VS, Rao BJ, Rajam MV (2004) Genetic transformation of the green alga Chlamydomonas reinhardtii by Agrobacterium tumefaciens. Plant Sci 166:731–738

    Article  CAS  Google Scholar 

  • La Russa M, Bogen C, Uhmeyer A, Doebbe A, Filippone E, Kruse O, Mussgnug JH (2012) Functional analysis of three type-2 DGAT homologue genes for triacylglycerol production in the green microalga Chlamydomonas reinhardtii. J Biotechnol 162:13–20

    Article  CAS  PubMed  Google Scholar 

  • León-Bañares R, González-Ballester D, Galván A, Fernández E (2004) Transgenic microalgae as green cell-factories. Trends Biotechnol 22:45–52

    Article  PubMed  Google Scholar 

  • Li DW, Cen SY, Liu YH, Balamurugan S, Zheng XY, Alimujiang A, Yang WD, Liu JS, Li HY (2016) A type 2 diacylglycerol acyltransferase accelerates the triacylglycerol biosynthesis in heterokont oleaginous microalga Nannochloropsis oceanica. J Biotechnol 229:65–71

    Article  CAS  PubMed  Google Scholar 

  • Liu F, Xia Y, Wu L, Fu D, Hayward A, Luo J, Yan X, Xiong X, Fu P, Wu G, Lu C (2015) Enhanced seed oil content by overexpressing genes related to triacylglyceride synthesis. Gene 557:163–171

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Han D, Yoon K, Hu Q, Li Y (2016) Characterization of type 2 diacylglycerol acyltransferase in Chlamydomonas reinhardtii reveals their distinct substrate specificities and functions in triacylglycerol biosynthesis. Plant J 86:3–19

    Article  PubMed  Google Scholar 

  • Mañas-Fernández A, Vilches-Ferrón M, Garrido-Cárdenas JA, Belarbi EH, Alonso DL, García-Maroto F (2009) Cloning and molecular characterization of the acyl-CoA:Diacylglycerol Acyltransferase 1 (DGAT1) gene from Echium. Lipids 44:555–568

    Article  PubMed  Google Scholar 

  • Mhaske VB, Beldjilali K, Ohlrogge JB, Pollard M (2005) Isolation and characterization of an Arabidopsis thaliana knockout line for phospholipid:diacylglycerol transacylase gene (At5g13640). Plant Physiol Biochem 43:413–417

    Article  CAS  PubMed  Google Scholar 

  • Molina Grima E, Belarbi EH, Acien Fernandez FG, Robles Medina A, Chisti Y (2003) Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv 20:491–515

    Article  CAS  PubMed  Google Scholar 

  • Muto M, Fukuda Y, Nemoto M, Yoshino T, Matsunaga T, Tanaka T (2013) Establishment of a genetic transformation system for the marine pennate diatom Fistulifera sp. strain JPCC DA0580-a high triglyceride producer. Mar Biotechnol 15:48–55

    Article  CAS  PubMed  Google Scholar 

  • Newman SM, Boynton JE, Gillham NW, Randolph-Anderson BL, Johnson AM, Harris EH (1990) Transformation of chloroplast ribosomal RNA genes in Chlamydomonas: molecular and genetic characterization of integration events. Genetics 126:875–888

    CAS  PubMed  PubMed Central  Google Scholar 

  • Niu Y-F, Zhang M-H, Li D-W, Yang W-D, Liu J-S, Bai W-B, Li H-Y (2013) Improvement of neutral lipid and polyunsaturated fatty acid biosynthesis by overexpressing a type 2 diacylglycerol acyltransferase in marine diatom Phaeodactylum tricornutum. Mar Drugs 11:4558–4569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niu Y-F, Wang X, Hu D-X, Balamurugan S, Li D-W, Yang W-D, Liu J-S, Li H-Y (2016) Molecular characterization of a glycerol-3-phosphate acyltransferase reveals key features essential for triacylglycerol production in Phaeodactylum tricornutum. Biotechnol Biofuels 9:60

    Article  PubMed  PubMed Central  Google Scholar 

  • Noor-Mohammadi S, Pourmir A, Johannes TW (2014) Method for assembling and expressing multiple genes in the nucleus of microalgae. Biotechnol Lett 36:561–566

    Article  CAS  PubMed  Google Scholar 

  • Oelkers P, Cromley D, Padamsee M, Billheimer JT, Sturley SL (2002) The DGA1 gene determines a second triglyceride synthetic pathway in yeast. J Biol Chem 277:8877–8881

    Article  CAS  PubMed  Google Scholar 

  • Poulsen N, Chesley PM, Kröger N (2006) Molecular genetic manipulation of the diatom Thalassiosira pseudonana (Bacillariophyceae). J Phycol 42:1059–1065

    Article  Google Scholar 

  • Ratledge C (2011) Are algal oils realistic options for biofuels? Eur J Lipid Sci Technol 113:135–136

    Article  CAS  Google Scholar 

  • Ratledge C, Cohen Z (2008) Microbial and algal oils: do they have a future for biodiesel or as commodity oils? Lipid Technol 20:155–160

    Article  Google Scholar 

  • Rodríguez-Ruiz J, Belarbi E-HH, García-Sánchez JL, Alonso DL (1998) Rapid simultaneous lipid extraction and transesterification for fatty acid analyses. Biotechnol Tech 12:689–691

  • Roessler PG, Brown LM, Dunahay TG, Heacox DA, Jarvis EE, Schneider JC, Talbot SG, Zeiler KG (1994) Genetic engineering approaches for enhanced production of biodiesel fuel from microalgae. In: Enzymatic conversion of biomass for fuels production. ACS Symposium Series, vol 566. American Chemical Society, pp 255–270.

  • Routaboul JM, Benning C, Bechtold N, Caboche M, Lepiniec L (1999) The TAG1 locus of Arabidopsis encodes for a diacylglycerol acyltransferase. Plant Physiol Biochem 37:831–840

    Article  CAS  PubMed  Google Scholar 

  • Run C, Fang L, Fan J, Fan C, Luo Y, Hu Z, Li Y (2016) Stable nuclear transformation of the industrial alga Chlorella pyrenoidosa. Algal Res 17:196–201

    Article  Google Scholar 

  • Schroda M, Blöcker D, Beck CF (2000) The HSP70A promoter as a tool for the improved expression of transgenes in Chlamydomonas. Plant J 21:121–131

    Article  CAS  PubMed  Google Scholar 

  • Shockey JM, Gidda SK, Chapital DC, Kuan JC, Dhanoa PK, Bland JM, Rothstein SJ, Mullen RT, Dyer JM (2006) Tung tree DGAT1 and DGAT2 have nonredundant functions in triacylglycerol biosynthesis and are localized to different subdomains of the endoplasmic reticulum. Plant Cell 18:2294–2313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sizova I, Fuhrmann M, Hegemann P (2001) A Streptomyces rimosus aphVIII gene coding for a new type phosphotransferase provides stable antibiotic resistance to Chlamydomonas reinhardtii. Gene 277:221–229

    Article  CAS  PubMed  Google Scholar 

  • Taylor DC, Katavic V, Zou J et al (2001) Field testing of transgenic rapeseed cv. Hero transformed with a yeast sn-2 acyltransferase results in increased oil content, erucic acid content and seed yield. Mol Breed 8:317–322

    Article  CAS  Google Scholar 

  • Traller JC, Cokus SJ, Lopez DA et al (2016) Genome and methylome of the oleaginous diatom Cyclotella cryptica reveal genetic flexibility toward a high lipid phenotype. Biotechnol Biofuels 9:258

    Article  PubMed  PubMed Central  Google Scholar 

  • Trentacoste EM, Shrestha RP, Smith SR, Glé C, Hartmann AC, Hildebrand M, Gerwick WH (2013) Metabolic engineering of lipid catabolism increases microalgal lipid accumulation without compromising growth. Proc Natl Acad Sci U S A 110:19748–19753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Úbeda-Mínguez P, Chileh T, Dautor Y, García-Maroto F, Alonso DL (2015) Tools for microalgal biotechnology: development of an optimized transformation method for an industrially promising microalga—Tetraselmis chuii. J Appl Phycol 27:223–232

  • Wang S, Lee DP, Gong N, Schwerbrock NM, Mashek DG, Gonzalez-Baró MR, Stapleton C, Li LO, Lewin TM, Coleman RA (2007) Cloning and functional characterization of a novel mitochondrial N-ethylmaleimide-sensitive glycerol-3-phosphate acyltransferase (GPAT2). Arch Biochem Biophys 465:347–358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang D, Ning K, Li J et al (2014) Nannochloropsis genomes reveal evolution of microalgal oleaginous traits. PLoS Genet 10:e1004094

    Article  PubMed  PubMed Central  Google Scholar 

  • Wannathong T, Waterhouse JC, Young RE, Economou CK, Purton S (2016) New tools for chloroplast genetic engineering allow the synthesis of human growth hormone in the green alga Chlamydomonas reinhardtii. Appl Microbiol Biotechnol 100:5467–5477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weselake RJ, Shah S, Tang M et al (2008) Metabolic control analysis is helpful for informed genetic manipulation of oilseed rape (Brassica napus) to increase seed oil content. J Exp Bot 59:3543–3549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu R, Yang T, Wang R, Liu A (2014) Characterisation of DGAT1 and DGAT2 from Jatropha curcas and their functions in storage lipid biosynthesis. Funct Plant Biol 41:321–329

    Article  CAS  Google Scholar 

  • Yamaoka Y, Achard D, Jang S, Legéret B, Kamisuki S, Ko D, Schulz-Raffelt M, Kim Y, Song WY, Nishida I, Li-Beisson Y, Lee Y (2016) Identification of a Chlamydomonas plastidial 2-lysophosphatidic acid acyltransferase and its use to engineer microalgae with increased oil content. Plant Biotechnol J 14:2158–2167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan J, Cheng R, Lin X, You S, Li K, Rong H, Ma Y (2013) Overexpression of acetyl-CoA synthetase increased the biomass and fatty acid proportion in microalga Schizochytrium. Appl Microbiol Biotechnol 97:1933–1939

    Article  CAS  PubMed  Google Scholar 

  • Yao Y, Lu Y, Peng K-T, Huang T, Niu Y-F, Xie W-H, Yang W-D, Liu J-S, Li H-Y (2014) Glycerol and neutral lipid production in the oleaginous marine diatom Phaeodactylum tricornutum promoted by overexpression of glycerol-3-phosphate dehydrogenase. Biotechnol Biofuels 7:110

    Article  Google Scholar 

  • Yoon K, Han D, Li Y, Sommerfeld M, Hu Q (2012) Phospholipid:diacylglycerol acyltransferase is a multifunctional enzyme involved in membrane lipid turnover and degradation while synthesizing triacylglycerol in the unicellular green microalga Chlamydomonas reinhardtii. Plant Cell Online 24:3708–3724

    Article  CAS  Google Scholar 

  • Zhang FY, Yang MF, Xu YN (2005) Silencing of DGAT1 in tobacco causes a reduction in seed oil content. Plant Sci 169:689–694

    Article  CAS  Google Scholar 

  • Zhang C, Iskandarov U, Klotz ET, Stevens RL, Cahoon RE, Nazarenus TJ, Pereira SL, Cahoon EB (2013) A thraustochytrid diacylglycerol acyltransferase 2 with broad substrate specificity strongly increases oleic acid content in engineered Arabidopsis thaliana seeds. J Exp Bot 64:3189–3200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Hao Q, Bai L et al (2014) Overexpression of the soybean transcription factor GmDof4 significantly enhances the lipid content of Chlorella ellipsoidea. Biotechnol Biofuels 7:128

    PubMed  PubMed Central  Google Scholar 

  • Zheng P, Allen WB, Roesler K et al (2008) A phenylalanine in DGAT is a key determinant of oil content and composition in maize. Nat Genet 40:367–372

    Article  CAS  PubMed  Google Scholar 

  • Zou J, Wei Y, Jako C, Kumar A, Selvaraj G, Taylor DC (1999) The Arabidopsis thaliana TAG1 mutant has a mutation in a diacylglycerol acyltransferase gene. Plant J 19:645–653

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was partially financed by the EnerGeticAl project from the Ministerio de Economía y Competitividad (MINECO, project IPT-2011-0842-920000) led by ENDESA and with the collaboration of TECNALIA, AITEMIN, and our research team (UAL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego López Alonso.

Electronic supplementary material

ESM 1

(DOCX 33 kb)

ESM 2

(DOCX 370 kb)

ESM 3

(DOCX 14 kb)

ESM 4

(DOCX 19 kb)

ESM 5

(DOCX 18 kb)

ESM 6

(DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Úbeda-Mínguez, P., García-Maroto, F. & Alonso, D.L. Heterologous expression of DGAT genes in the marine microalga Tetraselmis chui leads to an increase in TAG content. J Appl Phycol 29, 1913–1926 (2017). https://doi.org/10.1007/s10811-017-1103-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-017-1103-9

Keywords

Navigation