Skip to main content

Advertisement

Log in

Gold (III) bioreduction by cyanobacteria with special reference to in vitro biosafety assay of gold nanoparticles

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Bioreduction of Au3+ to Au0 and subsequent synthesis of gold nanoparticles using three cyanobacterial strains Leptolyngbya tenuis, Coleofasciculus chthonoplastes, and Nostoc ellipsosporum was investigated. The optimized condition for maximum gold nanoparticle synthesis was determined as 20 mg cyanobacterial biomass per 100 mL of 15 mg L−1 Au3+ solution as inoculum size at pH 5. At the onset of nanoparticle synthesis (up to 3 h) increased activity of catalase, ascorbate peroxidase, super oxide dismutase, and malondialdehyde content along with rapid loss of pigments and protein content (1–72 h) indicated gold toxicity at cellular level. Associated changes in thallus morphology were also significant. Nostoc biomass produced spherical- to irregular-shaped nanoparticles with diverse sizes and small number of nanorods. On the other hand, Coleofasciculus showed nanoparticle synthesis at extracellular medium which was either absent in Nostoc or very low in Leptolyngbya. Biosafety analysis by MTT assay using peripheral blood mononuclear cells (PBMC), two cancer cell lines viz. T cell acute (T-ALL) and human acute lymphoblastic leukemia (MOLT-4) and antibacterial effect against Pseudomonas aeruginosa and Staphylococcus aureus showed no toxic effect of synthesized gold nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ahmad A, Senapati S, Khan MI, Kumar R, Sastry M (2005) Extra-/intracellular biosynthesis of gold nanoparticles by an alkalo tolerant fungus, Trichothecium sp. J Biomed Nanotechnol 1:47–53

    Article  CAS  Google Scholar 

  • Alkilany AM, Murphy CJ (2010) Toxicity and cellular uptake of gold nanoparticles: what we have learned so far? J Nanopart Res 12:2313–2333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts, polyphenoxides in Beta vulgaris. Plant Physiol 24:1–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arunakumara KKIU, Zhang X (2008) Heavy metal bioaccumulation and toxicity with special reference to microalgae. J Ocean Univ China 7:60–64

    Article  CAS  Google Scholar 

  • Awasthi M, Das DN (2004) Heavy metal toxicity on nitrate reductase activity of free and immobilized algal cells. Int J Algae 6:151–157

    Article  Google Scholar 

  • Barnard AS (2006) Nanohazards: knowledge is our first defence. Nature Mater 5:245–248

    Article  CAS  Google Scholar 

  • Beattie IR, Haverkamp RG (2011) Silver and gold nanoparticles in plants: sites for the reduction to metal. Metallomics 3:628–632

    Article  CAS  PubMed  Google Scholar 

  • Beauchamp CO, Fridovich I (1971) Superoxide dismutase. Improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–287

    Article  CAS  PubMed  Google Scholar 

  • Brayner R, Barberousse H, Hemadi M, Djedjat C, Yéprémian C, Coradin T, Livage J, Fievet F, Couté A (2007) Cyanobacteria as bioreactors for the synthesis of Au, Ag, Pd, and Pt nanoparticles via an enzyme-mediated route. J Nanosci Nanotechnol 7:2696–2708

    Article  CAS  PubMed  Google Scholar 

  • Caspi V, Droppa M, Horváth G, Malkin S, Marder JB, Raskin VI (1999) The effect of copper on chlorophyll organization during greening of barley leaves. Photosynth Res 62:165–174

    Article  CAS  Google Scholar 

  • Chakraborty N, Pal R, Ramaswami A, Nayak D, Lahiri S (2006) Diatom: a potential bio-accumulator of gold. J Radioanal Nucl Chem 270:645–649

    Article  CAS  Google Scholar 

  • Chakraborty N, Banerjee A, Lahiri S, Panda A, Ghosh AN, Pal R (2009) Biorecovery of gold using cyanobacteria and an eukaryotic alga with special reference to nanogold formation–a novel phenomenon. J Appl Phycol 21:145–152

    Article  CAS  Google Scholar 

  • Connor EE, Mwamuka J, Gole A, Murphy CJ, Wyatt MD (2005) Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small 1:325–327

    Article  CAS  PubMed  Google Scholar 

  • Das SK, Das AR, Guha AK (2009) Gold nanoparticles: microbial synthesis and application in water hygiene management. Langmuir 25:8192–8199

    Article  CAS  PubMed  Google Scholar 

  • Gardea-Torresdey JL, Parsons JG, Gomez E, Peralta-Videa J, Troiani HE, Santiago P, Yacaman MJ (2002) Formation and growth of Au nanoparticles inside live alfalfa plants. Nano Lett 2:397–401

    Article  CAS  Google Scholar 

  • Goodman CM, McCusker CD, Yilmaz T, Rotello VM (2004) Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjug Chem 15:897–900

  • Gopal PK, Paul M, Paul S (2014) Curcumin induces caspase mediated apoptosis in JURKAT cells by disrupting the redox balance. Asian Pac J Cancer Prev 15:93–100

    Article  PubMed  Google Scholar 

  • Govindaraju K, Basha SK, Kumar VG, Singaravelu G (2008) Silver, gold and bimetallic nanoparticles production using single-cell protein (Spirulina platensis) Geitler. J Mater Sci 43:5115–5122

    Article  CAS  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  CAS  PubMed  Google Scholar 

  • Hodge JE, Hodge BT (1962) Carbohydrate chemistry. Academic, New York

    Google Scholar 

  • Huang J, Li Q, Sun D, Lu Y, Su Y, Yang X, Wang H, Wang Y, Shao H, He N, Hong J, Chen C (2007) Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology 18:105104

    Article  Google Scholar 

  • Johnson CJ, Dujardin E, Davis SA, Murphy CJ, Mann S (2002) Growth and form of gold nanorods prepared by seed-mediated, surfactant-directed synthesis. J Mater Chem 12:1765–1770

    Article  CAS  Google Scholar 

  • Kumar V, Yadav SK (2011a) Synthesis of stable, polyshaped silver, and gold nanoparticles using leaf extract of Lonicera japonica L. Int J Green Nanotechnol 3:281–291

    Article  CAS  Google Scholar 

  • Kumar V, Yadav SK (2011b) Synthesis of variable shaped gold nanoparticles in one solution using leaf extract of Bauhinia variegata L. Dig J Nanomater Biosci 6:1685–1693

    Google Scholar 

  • Kumar V, Yadav SK (2013) Influence of physiochemical factors on size of gold nanoparticles synthesised using leaf extract of Syzygium cumini. J Chem Sci Technol 2:104–107

    Google Scholar 

  • Kuyucak N, Volesky B (1989) Accumulation of gold by algal biosorbent. Biorecovery 1:189–204

    CAS  Google Scholar 

  • Lengke MF, Fleet ME, Southam G (2006a) Morphology of gold nanoparticles synthesized by filamentous cyanobacteria from gold (I)-thiosulfate and gold (III)-chloride complexes. Langmuir 22:2780–2787

    Article  CAS  PubMed  Google Scholar 

  • Lengke MF, Fleet ME, Southam G (2006b) Bioaccumulation of gold by filamentous cyanobacteria between 25 and 200°C. Geomicrobiol J 23:591–597

    Article  CAS  Google Scholar 

  • Lengke MF, Ravel B, Fleet ME, Wanger G, Gordon RA, Southam G (2006c) Mechanisms of gold bioaccumulation by filamentous cyanobacteria from gold (III)-chloride complex. Environ Sci Technol 40:6304–6309

    Article  CAS  PubMed  Google Scholar 

  • Lengke MF, Ravel B, Fleet ME, Wanger G, Gordon RA, Southam G (2007) Precipitation of gold by the reaction of aqueous gold (III) chloride with cyanobacteria at 25–80°C—studied by X-ray absorption spectroscopy. Can J Chem 85:651–659

    Article  CAS  Google Scholar 

  • Lockman PR, Oyewumi MO, Koziara JM, Roder KE, Mumper RJ, Allen DD (2003) Brain uptake of thiamine-coated nanoparticles. J Control Release 93:271–282

    Article  CAS  PubMed  Google Scholar 

  • Lowry OH, Rosebergh NJ, Rarr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Mata YN, Torres E, Blázquez ML, Ballester A, González FMJA, Munoz JA (2009) Gold (III) biosorption and bioreduction with the brown alga Fucus vesiculosus. J Hazard Mater 166:612–618

    Article  CAS  PubMed  Google Scholar 

  • Mohanpuria P, Rana NK, Yadav SK (2008) Biosynthesis of nanoparticles: technological concepts and future applications. J Nanopart Res 10:507–517

    Article  CAS  Google Scholar 

  • Mössmer S, Spatz JP, Möller M, Aberle T, Schmidt J, Burchard W (2000) Solution behavior of poly (styrene)-B lock-poly (2-vinylpyridine) micelles containing gold nanoparticles. Macromolecules 33:4791–4798

    Article  Google Scholar 

  • MubarakAli D, Arunkumar J, Nag KH, SheiksyedIshack KA, Baldev E, Pandiaraj D, Thajuddin N (2013) Gold nanoparticles from pro and eukaryotic photosynthetic microorganisms—Comparative studies on synthesis and its application on biolabelling. Colloids Surfaces B 103:166–173

    Article  CAS  Google Scholar 

  • Nair B, Pradeep T (2002) Coalescence of nanoclusters and formation of submicron crystallites assisted by Lactobacillus strains. Crystal Growth Des 2:293–298

    Article  CAS  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Nel A, Xia T, Mädler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627

    Article  CAS  PubMed  Google Scholar 

  • Ott FD (1965) Synthetic media and techniques for the axenic cultivation of marine algae and flagellates. Virgin J Sci 16:205–218

    CAS  Google Scholar 

  • Pal S, Ghosh S, Bandyopadhyay S, Mandal C, Bandhyopadhyay S, Bhattacharya DK, Mandal C (2004) Differential expression of 9-O-acetylated sialoglycoconjugates on leukemic blasts: a potential tool for long-term monitoring of children with acute lymphoblastic leukemia. Int J Cancer 11:270–277

    Article  Google Scholar 

  • Pan Y, Leifert A, Ruau D, Neuss S, Bornemann J, Schmid G, Brandau W, Simon U, Jahnen-Dechent W (2009) Gold nanoparticles of diameter 1.4 nm trigger necrosis by oxidative stress and mitochondrial damage. Small 5:2067–2076

    Article  CAS  PubMed  Google Scholar 

  • Parial D, Pal R (2014) Green synthesis of gold nanoparticles using cyanobacteria and their characterization. Indian J Appl Res 4:69–72

    Article  Google Scholar 

  • Parial D, Pal R (2015) Biosynthesis of monodisperse gold nanoparticles by green alga Rhizoclonium and associated biochemical changes. J Appl Phycol 27:975–984

    Article  CAS  Google Scholar 

  • Parial D, Patra HK, Dasgupta AK, Pal R (2012a) Screening of different algae for green synthesis of gold nanoparticle. Eur J Phycol 47:22–29

    Article  CAS  Google Scholar 

  • Parial D, Patra HK, Roychoudhury P, Dasgupta AK, Pal R (2012b) Gold nanorod production by cyanobacteria—a green chemistry approach. J Appl Phycol 24:55–60

    Article  CAS  Google Scholar 

  • Patra HK, Banerjee S, Chaudhuri U, Lahiri P, Dasgupta AK (2007) Cell selective response to gold nanoparticles. Nanomedicine 3:111–119

    CAS  PubMed  Google Scholar 

  • Sadashivam S, Manickam A (1996) Biochemical methods. New Age International Pvt Ltd, New Delhi

    Google Scholar 

  • Sathyavathi R, Krishna MB, Rao SV, Saritha R, Rao DN (2010) Biosynthesis of silver nanoparticles using Coriandrum sativum leaf extract and their application in nonlinear optics. Adv Sci Lett 3:138–143

    Article  CAS  Google Scholar 

  • Schachter D (2013) The source of toxicity in CTAB and CTAB-stabilized gold nanorods. Doctoral dissertation, Rutgers University

  • Shabnam N, Pardha-Saradhi P (2013) Photosynthetic electron transport system promotes synthesis of Au-nanoparticles. Plos One 8(8):e71123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shakibaie M, Forootanfar H, Mollazadeh‐Moghaddam K, Bagherzadeh Z, Nafissi‐Varcheh N, Shahverdi AR, Faramarzi MA (2010) Green synthesis of gold nanoparticles by the marine microalga Tetraselmis suecica. Biotechnol Appl Biochem 57:71–75

  • Shukla R, Bansali V, Chaudhury M, Basu A, Bhonde RR, Sastry M (2005) Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview. Langmuir 21:10644–10654

    Article  CAS  PubMed  Google Scholar 

  • Sinniah UR, Ellis RH, John P (1998) Irrigation and seed quality development in rapid-cycling Brassica: Seed germination and longevity. Ann Bot 82:309–314

    Article  Google Scholar 

  • Stanier RY, Kunisawa R, Mandel M, Cohen-Bazire G (1971) Purification and properties of unicellular blue-green algae (Order Chroococcales). Bacteriol Rev 35:171–205

    CAS  PubMed  PubMed Central  Google Scholar 

  • Turkevitch J, Stevenson PC, Hillier J (1951) Nucleation and growth process in the synthesis of colloidal gold. Discuss Faraday Soc 11:55–75

    Article  Google Scholar 

  • Turner M, Golovko VB, Vaughan OP, Abdulkin P, Berenguer-Murcia A, Tikhov MS, Johnson BE, Lambert RM (2008) Selective oxidation with dioxygen by gold nanoparticles catalysts derived from 55-atom clusters. Nature 454:981–983

    Article  CAS  PubMed  Google Scholar 

  • Villiers CL, Freitas H, Couderc R, Villiers MB, Marche PN (2009) Analysis of the toxicity of gold nanoparticles on the immune system: effect on dendritic cell functions. J Nanopart Res 12:55–60

    Article  Google Scholar 

  • Zhang YX, Zheng J, Gao G, Kong YF, Zhi X, Wang K, Zhang XQ, Cui DX (2011) Biosynthesis of gold nanoparticles using chloroplasts. Int J Nanomede 6:2899

Download references

Acknowledgments

We would like to acknowledge the financial assistance of University Grants Commission (UGC-RFSMS). We sincerely acknowledge Prof. Anjan Kumar Dasgupta of the Department of Biochemistry, University of Calcutta, for his cooperation during the work. We acknowledge Dr. Sagarmoy Ghosh, Department of Microbiology, C.U., for his help and support. We are also thankful to Ms. Urmila Goswami for her help during the HRTEM studies and Mr. Tridib Das for the ESEM studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruma Pal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parial, D., Gopal, P.K., Paul, S. et al. Gold (III) bioreduction by cyanobacteria with special reference to in vitro biosafety assay of gold nanoparticles. J Appl Phycol 28, 3395–3406 (2016). https://doi.org/10.1007/s10811-016-0880-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-016-0880-x

Keywords

Navigation