Skip to main content
Log in

Toxic effect on the membrane system and cell proliferation of Prorocentrum donghaiense caused by the novel algicidal fungus Talaromyces purpurogenus YL13

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

A fungal strain YL13 with algicidal activity against the dinoflagellate Prorocentrum donghaiense was isolated from Wild Fox Island, Zhuhai, China, and identified as Talaromyces purpurogenus YL13 on the basis of 18S ribosomal RNA (rRNA) sequence. Strain YL13 exhibited algicidal activity through the mechanism of indirect attack, and its algicidal activity was improved from 80.3 to 96.8 % by optimization of environmental and nutrient factors with response surface methodology (RSM). Effects of strain YL13 on the membrane system and cell proliferating of P. donghaiense were investigated to elucidate the algicidal mechanism. The increase in both ATPase activities and malondialdehyde (MDA) contents suggested that the membrane in algal cells was damaged. Damage was observed in atomic force microscopy (AFM) images and the surface morphology of cells. Real-time PCR assay showed changes in the transcript abundance of proliferating cell nuclear antigen (PCNA) gene. The release of nucleic acids and changes of PCNA gene expression indicated that DNA synthesis was affected, and this influenced cell proliferation and the membrane system of P. donghaiense. The fungal supernatant might be potentially used as a bioagent for controlling harmful algae. Strain YL13 is the first record of a T. purpurogenus being algicidal to the harmful dinoflagellate P. donghaiense, and this is the first report to explore the mechanism of toxic effects on membrane system and cell proliferation of the marine T. purpurogenus against harmful P. donghaiense.

The toxicity mechanism of algicidal fungus Talaromyces purpurogenus YL13 against Prorocentrum donghaiense

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bailly C, Benamar A, Corbineau F, Come D (1996) Changes in malondialdehyde content and in superoxide dismutase, catalase and glutathione reductase activities in sunflower seeds as related to deterioration during accelerated aging. Physiol Plantarum 97:104–110

    Article  CAS  Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Ana1 Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Chen CZ, Cooper SL (2002) Interactions between dendrimer biocides and bacterial membranes. Biomaterials 23:3359–3368

    Article  CAS  PubMed  Google Scholar 

  • Deeds JR, Terlizzi DE, Adolf JE, Stoecker DK, Place AR (2002) Toxic activity from cultures of Karlodinium micrum (= Gyrodinium galatheanum) (Dinophyceae)—a dinoflagellate associated with fish mortalities in an estuarine aquaculture facility. Harmful Algae 1:169–189

    Article  CAS  Google Scholar 

  • Fogg GE (2002) Harmful algae—a perspective. Harmful Algae 1:1–4

    Article  Google Scholar 

  • Guillard RL (1975) Culture of phytoplankton for feeding marine invertebrates. In: Smith WL, Canley MH (eds) Culture: of marine invertebrate animals. Plenum Press, New York, pp 26–60

    Google Scholar 

  • Hallegraeff G (1993) A review of harmful algal blooms and their apparent global increase. Phycologia 32:79–99

    Article  Google Scholar 

  • Han GM, Feng XG, Jia Y, Wang CY, He XB, Zhou QY, Tian XJ (2011) Isolation and evaluation of terrestrial fungi with algicidal ability from Zijin Mountain, Nanjing, China. J Microbiol 49:562–567

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Liang S, Sui ZH, Mao YX, Guo H (2010) Cloning and characterization of proliferating cell nuclear antigen gene of Alexandrium catenella (dinoflagellate) with respect to cell growth. Acta Oceanol Sinica 29:90–96

    Article  Google Scholar 

  • Hussain H, Kock I, Ahmed AH, Ahmed KAR, Abbas G, Green IR, Shah A, Badshah A, Saleem M, Draeger S, Schulz BJ, Krohn K (2014) Antimicrobial chemical constituents from endophytic fungus Phoma sp. Asian Pac J Trop Med 7:699–702

    Article  CAS  Google Scholar 

  • Jeong HJ, Kim JS, Yoo DY, Kim ST, Song JY, Kim TH, Seong KA, Kang NS, Kim MS, Kim JH, Kim S, Ryu J, Lee HM, Yih WH (2008) Control of the harmful alga Cochlodinium polykrikoides by the naked ciliate Strombidinopsis jeokjo in mesocosm enclosures. Harmful Algae 7:368–377

    Article  Google Scholar 

  • Jia Y, Han GM, Wang CY, Guo P, Jiang WX, Li XN, Tian XJ (2010) The efficacy and mechanisms of fungal suppression of freshwater harmful algal bloom species. J Hazard Mater 183:176–181

    Article  CAS  PubMed  Google Scholar 

  • Kelman Z (1997) PCNA: structure, functions and interactions. Oncogene 14:629–640

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi Y, Imamura S, Hanaoka M, Tanaka K (2011) A tetrapyrrole-regulated ubiquitin ligase controls algal nuclear DNA replication. Nat Cell Biol 13:483–487

    Article  CAS  PubMed  Google Scholar 

  • Li GL, Zhang XL, You JM, Song CH, Sun ZW, Xia L, Suo YR (2011) Highly sensitive and selective pre-column derivatization high-performance liquid chromatography approach for rapid determination of triterpenes oleanolic and ursolic acids and application to Swertia species: optimization of triterpenic acids extraction and pre-column derivatization using response surface methodology. Anal Chim Acta 688:208–218

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Zhu H, Zhang HJ, Chen ZR, Tian Y, Xu H, Zheng TL, Zheng W (2014) Toxicity of algicidal extracts from Mangrovimonas yunxiaonensis strain LY01 on a HAB causing Alexandrium tamarense. J Hazard Mater 278:372–381

    Article  CAS  PubMed  Google Scholar 

  • Liao CL, Liu XB (2014) High-cell-density cultivation and algicidal activity assays of a novel algicidal bacterium to control algal bloom caused by water eutrophication. Water Air Soil Poll 225:1–8

    Article  CAS  Google Scholar 

  • Lichtenthaler HK, Wellburn AR (1982) Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem Soc Trans 11:591–592

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2 −ΔΔ C T method. Methods 25:402–408

  • Lu DD, Goebel J (2001) Five red tide species in genus Prorocentrum including the description of Prorocentrum donghaiense Lu Sp. nov. from the East China Sea. Chin J Oceanol Limnol 19:337–344

    Article  Google Scholar 

  • Malfatti F, Azam F (2009) Atomic force microscopy reveals microscale networks and possible symbioses among pelagic marine bacteria. Aquat Microb Ecol 58:1–14

    Article  Google Scholar 

  • McLeod DJ, Hallegraeff GM, Hosie GW, Richardson AJ (2012) Climate-driven range expansion of the red-tide dinoflagellate Noctiluca scintillans into the Southern Ocean. J Plankton Res 34:332–337

    Article  Google Scholar 

  • Mohamed ZA, Hashem M, Alamri SA (2014) Growth inhibition of the cyanobacterium Microcystis aeruginosa and degradation of its microcystin toxins by the fungus Trichoderma citrinoviride. Toxicon 86:51–58

    Article  CAS  PubMed  Google Scholar 

  • Nakashima T, Miyazaki Y, Matsuyama Y, Muraoka W, Yamaguchi K, Oda T (2006) Producing mechanism of an algicidal compound against red tide phytoplankton in a marine bacterium γ-proteobacterium. Appl Microbiol Biotech 73:684–690

    Article  CAS  Google Scholar 

  • Oh M-Y, Lee SB, Jin D-H, Hong Y-K, Jin H-J (2010) Isolation of algicidal compounds from the red alga Corallina pilulifera against red tide microalgae. J Appl Phycol 22:453–458

    Article  CAS  Google Scholar 

  • Paul C, Pohnert G (2013) Induction of protease release of the resistant diatom Chaetoceros didymus in response to lytic enzymes from an algicidal bacterium. PLoS One 8:e57577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prelich G, Kostura M, Marshak DR, Mathews MB, Stillman B (1987) The cell-cycle regulated proliferating cell nuclear antigen is required for SV40 DNA replication in vitro. Nature 326:471–475

    Article  CAS  PubMed  Google Scholar 

  • Redhead K, Wright S (1980) Lysis of the cyanobacterium Anabaena flos-aquae by antibiotic-producing fungi. J Gen Microbiol 119:95–101

    CAS  Google Scholar 

  • Sheik AR, Brussaard CP, Lavik G, Lam P, Musat N, Krupke A, Littmann S, Strous M, Kuypers MM (2014) Responses of the coastal bacterial community to viral infection of the algae Phaeocystis globosa. ISME J 8:212–225

    Article  CAS  PubMed  Google Scholar 

  • Stoecker DK, Adolf JE, Place AR, Glibert PM, Meritt D (2008) Effects of the dinoflagellates Karlodinium veneficum and Prorocentrum minimum on early life history stages of the eastern oyster (Crassostrea virginica). Mar Biol 154:81–90

    Article  Google Scholar 

  • Sun DQ, Li AW, Li J, Li DG, Li YX, Feng H, Gong MZ (2009) Changes of lipid peroxidation in carbon disulfide-treated rat nerve tissues and serum. Chem Biol Interact 179:110–117

    Article  CAS  PubMed  Google Scholar 

  • Tilney CL, Pokrzywinski KL, Coyne KJ, Warner ME (2014) Growth, death, and photobiology of dinoflagellates (Dinophyceae) under bacterial-algicide control. J Appl Phycol 26:2117–2127

    Article  CAS  Google Scholar 

  • Van Donk E (1989) The role of fungal parasites in phytoplankton succession. In: Sommer U (ed) Plankton Ecology. Springer, Berlin, pp 171–194

    Chapter  Google Scholar 

  • Veldhuis M, Kraay G, Timmermans K (2001) Cell death in phytoplankton: correlation between changes in membrane permeability, photosynthetic activity, pigmentation and growth. Eur J Phycol 36:167–177

    Article  Google Scholar 

  • Wang JH, Huang XQ (2003) Ecological characteristics of Prorocentrum dentatum and the cause of harmful algal bloom formation in China Sea. J Appl Ecol 14:1065–1069

    CAS  Google Scholar 

  • Wang Y, Tang X, Li YQ, Liu Y (2002) Stimulation effect of anthracene on marine microalgae growth. J Appl Ecol 13:343–346

    CAS  Google Scholar 

  • Xu Q, Shen YY, Wang HF, Zhang NP, Xu S, Zhang L (2013) Application of response surface methodology to optimise extraction of flavonoids from Fructus sophorae. Food Chem 138:2122–2129

    Article  CAS  PubMed  Google Scholar 

  • Yang QC, Chen LN, Hu XL, Zhao L, Yin PH, Li Q (2015a) Toxic effect of a marine bacterium on aquatic organisms and its algicidal substance against Phaeocystis globosa. PLoS One 10:e0114933

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Liu Q, Chai Z, Tang Y (2015b) Inhibition of marine coastal bloom-forming phytoplankton by commercially cultivated Gracilaria lemaneiformis (Rhodophyta). J Appl Phycol 27:2341–2352

    Article  CAS  Google Scholar 

  • Zhang SL, Zhang B, Dai W, Zhang XM (2011) Oxidative damage and antioxidant responses in Microcystis aeruginosa exposed to the allelochemical berberine isolated from golden thread. J Plant Physiol 168:639–643

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Ling F, Yi YL, Zhang HY, Wang GX (2014a) Algicidal activity and potential mechanisms of ginkgolic acids isolated from Ginkgo biloba exocarp on Microcystis aeruginosa. J Appl Phycol 26:323–332

    Article  CAS  Google Scholar 

  • Zhang C, Yi YL, Hao K, Liu GL, Wang GX (2014b) Algicidal activity of Salvia miltiorrhiza Bung on Microcystis aeruginosa—towards identification of algicidal substance and determination of inhibition mechanism. Chemosphere 93:997–1004

    Article  Google Scholar 

  • Zhao LY, Mi TZ, Zhen Y, Li MY, He SY, Sun J, Yu ZG (2009) Cloning of proliferating cell nuclear antigen gene from the dinoflagellate Prorocentrum donghaiense and monitoring its expression profiles by real-time RT-PCR. Hydrobiologia 627:19–30

    Article  CAS  Google Scholar 

  • Zhou J, Cai ZH, Xing KZ (2011) Potential mechanisms of phthalate ester embryotoxicity in the abalone Haliotis diversicolor supertexta. Environ Pollut 159:1114–1122

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Joint Fund of National Natural Science Foundation of China-Guangdong (Project No. U11330003) and the National Natural Science Foundation of China (Project No. 41076068) and Science and Technology Program of Guangdong, China (Project No. 2014A020217007).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ling Zhao or Pinghe Yin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Esm 1

Growth curve of Strain YL13 and the algicidal percentage treated by each growth phase of strain YL13 supernatant. All error bars indicate SE of three replicates. (PDF 67 kb)

Esm 2

The effect of different culture temperature on the fungal growth rate and algicidal percentage. All error bars indicate SE of three replicates. (PDF 66 kb)

Esm 3

The effect of different culture pH on the fungal growth rate and algicidal percentage. All error bars indicate SE of three replicates. (PDF 52 kb)

Esm 4

The effect of different culture salinity on the fungal growth rate and algicidal percentage. All error bars indicate SE of three replicates. (PDF 54 kb)

Esm 5

The effect of different culture rotation speed on the fungal growth rate and algicidal percentage. All error bars indicate SE of three replicates. (PDF 64 kb)

Esm 6

The effect of different carbon sources on the fungal growth rate and algicidal percentage. All error bars indicate SE of three replicates. (PDF 55 kb)

Esm 7

The effect of different nitrogen sources on the fungal growth rate and algicidal percentage. All error bars indicate SE of three replicates. (PDF 64 kb)

Esm 8

The effect of different phosphorus sources on the fungal growth rate and algicidal percentage. All error bars indicate SE of three replicates. (PDF 54 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shu, W., Zhao, L., Hou, S. et al. Toxic effect on the membrane system and cell proliferation of Prorocentrum donghaiense caused by the novel algicidal fungus Talaromyces purpurogenus YL13. J Appl Phycol 29, 275–284 (2017). https://doi.org/10.1007/s10811-016-0878-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-016-0878-4

Keywords

Navigation