Skip to main content
Log in

Carotenoid Profile in Prochlorococcus sp. and Enrichment of Lutein Using Different Nitrogen Sources

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Various carotenoids of the cyanobacterium Prochlorococcus sp. are identified using chromatographic/spectroscopic techniques and quantified using HPLC-DAD. In the present study, β-apo-8′-carotenal was used as internal standard. Identification of carotenoids was carried out by comparing the retention time, absorption spectra, and mass spectra of unknown peaks with reference standards. All-trans-lutein was found to be the major carotenoid in this cyanobacterium, and, therefore, algal productivity and the potential for lutein accumulation were analyzed as a function of different nitrogen sources such as nitrate, nitrite, ammonia, and urea for cultivation. Among them, urea clearly led to the best lutein accumulation. According to the experimental evidence, lutein increased from 2.54 to 3.34 mg g−1 in the cyanobacteria when urea was used as the nitrogen source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Amorim-Carrilho K, Cepeda A, Fente C, Regal P (2014) Review of methods for analysis of carotenoids. Trends Anal Chem 56:49–73

  • Andersen RA, Berges JA, Harrisson PJ, Watanabe MM (2005) Recipes for freshwater and seawater media. In: Anderson RA (ed) Algal culturing techniques. Elsevier Academic Press, Amsterdam, pp 429–538

    Google Scholar 

  • Arnal E, Miranda M, Almansa I, Muriach M, Barcia JM, Romero FJ, Diaz-Llopis M, Bosch-Morell F (2009) Lutein prevents cataract development and progression in diabetic rats. Graefes Arch Clin Exp Ophthalmol 247:115–120

    Article  PubMed  Google Scholar 

  • Astorg P (1997) Food carotenoids and cancer prevention: an overview of current research. Trends Food Sci Technol 8:406–413

    Article  CAS  Google Scholar 

  • Becker EW (1993) Microalgae: biotechnology and microbiology,. Cambridge University Press

  • Becker W (2004) Microalgae in human and animal nutrition. In: Richmond A (ed) Microalgal culture: biotechnology and applied phycology. Blackwell Science, Oxford, pp 312–351

    Google Scholar 

  • Bendich A, Olson JA (1989) Biological actions of carotenoids. FASEB J 3:1927–1932

    CAS  PubMed  Google Scholar 

  • Blanco AM, Moreno J, Del Campo JA, Rivas J, Guerrero MG (2007) Outdoor cultivation of lutein-rich cells of Muriellopsis sp. in open ponds. Appl Microbiol Biotechnol 73:1259–1266

    Article  CAS  PubMed  Google Scholar 

  • Borowitzka MA (2010) Carotenoid production using microorganisms. In: Cohen Z, Ratledge C (eds) Single cell oils. Microbial and algal oils. AOCS Press, Urbana, pp 225–240

    Chapter  Google Scholar 

  • Borowitzka MA (2013) High-value products from microalgae—their development and commercialisation. J Appl Phycol 25:743–756

    Article  CAS  Google Scholar 

  • Borowitzka MA, Borowitzka LJ (1988) Limits to growth and carotenogenesis in laboratory and large-scale outdoor cultures of Dunaliella salina. In: Stadler T, Mollion J, Verdus MC, Karamanos Y, Morvan H, Christiaen D (eds) Algal biotechnology. Elsevier Applied Science, Barking, pp 371–381

    Google Scholar 

  • Britton G, Liaaen-Jensen S, Pfander H, Mercadante AZ, Egeland ES (2004) Carotenoids – Handbook. Birkhäuser Verlag, Basel, CH

  • Del Campo JA, Rodriguez H, Moreno J, Vargas M, Rivas J, Guerrero MG (2001) Lutein production by Muriellopsis sp. in an outdoor tubular photobioreactor. J Biotechnol 85:289–295

    Article  PubMed  Google Scholar 

  • Delcourt C, Carriere I, Delage M, Barberger-Gateau P, Schalch W (2006) Plasma lutein and zeaxanthin and other carotenoids as modifiable risk factors for age-related maculopathy and cataract: the POLA Study. Invest Ophthalmol Vis Sci 47:2329–2335

    Article  PubMed  Google Scholar 

  • Demmig-Adams B, Adams WW (2002) Antioxidants in photosynthesis and human nutrition. Science 298:2149–2153

    Article  CAS  PubMed  Google Scholar 

  • Dwyer JH, Navab M, Dwyer KM, Hassan K, Sun P, Shircore A, Hama-Levy S, Hough G, Wang X, Drake T (2001) Oxygenated carotenoid lutein and progression of early atherosclerosis the Los Angeles atherosclerosis study. Circulation 103:2922–2927

    Article  CAS  PubMed  Google Scholar 

  • Erdoğan A, Çağır A, Dalay MC, Eroğlu AE (2015) Composition of carotenoids in Scenedesmus protuberans: application of chromatographic and spectroscopic methods. Food Anal Methods 8:1970–1978

    Article  Google Scholar 

  • Fernández-Sevilla J, Acién Fernández F, Molina Grima E (2010) Biotechnological production of lutein and its applications. Appl Microbiol Biotechnol 86:27–40

    Article  PubMed  Google Scholar 

  • Goldman JC (1977) Biomass production in mass cultures of marine phytoplankton at varying temperatures. J Exp Mar Biol Ecol 27:161–169

    Article  Google Scholar 

  • Granado F, Olmedilla B, Blanco I (2003) Nutritional and clinical relevance of lutein in human health. Br J Nutr 90:487–502

    Article  CAS  PubMed  Google Scholar 

  • Heber D, Lu QY (2002) Overview of mechanisms of action of lycopene. Exp Biol Med 227:920–923

    CAS  Google Scholar 

  • Hsieh C-H, Wu W-T (2009) Cultivation of microalgae for oil production with a cultivation strategy of urea limitation. Bioresour Technol 100:3921–3926

    Article  CAS  PubMed  Google Scholar 

  • Jin E, Polle JE, Lee H, Hyun S, Chang M (2003) Xanthophylls in microalgae: from biosynthesis to biotechnological mass production and application. J Microbiol Biotechnol 13:165–174

    CAS  Google Scholar 

  • Krinsky NI, Landrum JT, Bone RA (2003) Biologic mechanisms of the protective role of lutein and zeaxanthin in the eye. Annu Rev Nutr 23:171–201

    Article  CAS  PubMed  Google Scholar 

  • Le Marchand L, Hankin JH, Kolonel LN, Beecher GR, Wilkens LR, Zhao LP (1993) Intake of specific carotenoids and lung cancer risk. Cancer Epidemiol Biomarkers Prev 2:183–187

    PubMed  Google Scholar 

  • Li Y, Horsman M, Wang B, Wu N, Lan CQ (2008) Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans. Appl Microbiol Biotechnol 81:629–636

    Article  CAS  PubMed  Google Scholar 

  • Lin J-H, Lee D-J, Chang J-S (2015) Lutein production from biomass: marigold flowers versus microalgae. Bioresour Technol 184:421–428

    Article  CAS  PubMed  Google Scholar 

  • Manke Natchigal A, Oliveira Stringheta A, Corrêa Bertoldi M, Stringheta P (2010) Quantification and characterization of lutein from Tagetes (Tagetes patula L.) and Calendula (Calendula officinalis L.) flowers. In: XXVIII International Horticultural Congress on Science and Horticulture for People (IHC2010): International Symposium on 939, 2010. pp 309–314

  • Moeller SM, Jacques PF, Blumberg JB (2000) The potential role of dietary xanthophylls in cataract and age-related macular degeneration. J Am Coll Nutr 19(supl 5):522S–527S

    Article  CAS  PubMed  Google Scholar 

  • Olmedilla B, Granado F, Blanco I, Vaquero M, Cajigal C (2001) Lutein in patients with cataracts and age‐related macular degeneration: a long‐term supplementation study. J Sci Food Agric 81:904–909

    Article  CAS  Google Scholar 

  • Perez-Garcia O, Escalante FM, de-Bashan LE, Bashan Y (2011) Heterotrophic cultures of microalgae: metabolism and potential products. Water Res 45:11–36

    Article  CAS  PubMed  Google Scholar 

  • Rangel-Yagui CO, Danesi EDG, de Carvalho JCM, Sato S (2004) Chlorophyll production from Spirulina platensis: cultivation with urea addition by fed-batch process. Bioresour Technol 92:133–141

    Article  CAS  Google Scholar 

  • Richmond A (1990) Large scale microalgal culture and applications. Prog Clin Biol Res 7:269–330

    CAS  Google Scholar 

  • Sánchez J, Fernández J, Acién F, Rueda A, Pérez-Parra J, Molina E (2008) Influence of culture conditions on the productivity and lutein content of the new strain Scenedesmus almeriensis. Process Biochem 43:398–405

    Article  Google Scholar 

  • Sánchez-Luna LD, Converti A, Tonini GC, Sato S, de Carvalho J (2004) Continuous and pulse feedings of urea as a nitrogen source in fed-batch cultivation of Spirulina platensis. Aquac Eng 31:237–245

    Article  Google Scholar 

  • Shi XM, Chen F, Yuan JP, Chen H (1997) Heterotrophic production of lutein by selected Chlorella strains. J Appl Phycol 9:445–450

    Article  CAS  Google Scholar 

  • Shi XM, Liu HJ, Zhang XW, Chen F (1999) Production of biomass and lutein by Chlorella protothecoides at various glucose concentrations in heterotrophic cultures. Process Biochem 34:341–347

    Article  CAS  Google Scholar 

  • Shi X-M, Zhang X-W, Chen F (2000) Heterotrophic production of biomass and lutein by Chlorella protothecoides on various nitrogen sources. Enzyme Microb Technol 27:312–318

    Article  CAS  PubMed  Google Scholar 

  • Soletto D, Binaghi L, Lodi A, Carvalho J, Converti A (2005) Batch and fed-batch cultivations of Spirulina platensis using ammonium sulphate and urea as nitrogen sources. Aquaculture 243:217–224

    Article  CAS  Google Scholar 

  • Stengel E, Soeder C (1975) Control of photosynthetic production in aquatic ecosystems. In: Cooper JP (ed) Photosynthesis and productivity in different environments. Cambridge University Press, Cambridge, pp 645–660

    Google Scholar 

  • Wei D, Chen F, Chen G, Zhang X, Liu L, Zhang H (2008) Enhanced production of lutein in heterotrophic Chlorella protothecoides by oxidative stress. Scı Chına Ser C 51(12):1088–1093

    Article  CAS  Google Scholar 

  • Zhang J, Sun Z, Sun P, Chen T, Chen F (2014) Microalgal carotenoids: beneficial effects and potential in human health. Food Funct 5:413–425

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the Scientific and Technological Research Council of Turkey for the support of this work through the project TBAG 110T099 and also the Center of Material’s Research at İzmir Institute of Technology for the facilities (SEM and Elemental Analyzer).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayşegül Erdoğan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 253 kb)

ESM 2

(DOCX 24 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erdoğan, A., Demirel, Z., Eroğlu, A.E. et al. Carotenoid Profile in Prochlorococcus sp. and Enrichment of Lutein Using Different Nitrogen Sources. J Appl Phycol 28, 3251–3257 (2016). https://doi.org/10.1007/s10811-016-0861-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-016-0861-0

Keywords

Navigation