Skip to main content
Log in

Short-term evaluation of the photosynthetic activity of an alkaliphilic microalgae consortium in a novel tubular closed photobioreactor

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

A novel lab-scale tubular closed photobioreactor was developed and used for the assessment of the photosynthetic activity of an alkaliphilic microalgae mixed consortium under non-substrate limitation (i.e., bicarbonate excess), controlled irradiance, and mixing conditions. Two prominent haloalkaliphilic strains were identified as members of the consortium: Halospirulina sp. and Picochlorum sp. The photobioreactor (vol = 0.5 L) consists of two interconnected U-shaped borosilicate glass tubes (internal diameter 2 cm) reaching a surface/volume ratio of 200 m2 m−3. This configuration specifically addressed the issue of the homogeneous light distribution among the microalgae suspended cells cultured by using fixed equidistant cool white light LEDs nearby the surface of the glass tubes. A soft homogeneous pneumatic mixing (i.e., airlift) was implemented in the culture fostering Reynolds numbers around 3000. The photosynthetic activity of the microalgae consortium was evaluated during different short-term kinetic assays by fitting the dynamics of the dissolved oxygen concentration to an oxygenic kinetic model. The photobioreactor operated in a closed loop allowed to control the produced oxygen by the extraction of the cumulated gas in the headspace. The use of this novel photobioreactor allowed the photosynthetic activity of microalgae suspended cells to be assessed, where the dissolved oxygen concentration and irradiance were the main parameters affecting the oxygenic rates under alkaline pH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abomohra AEF, Wagner M, El-Sheekh M, Hanelt D (2013) Lipid and total fatty acid productivity in photoautotrophic fresh water microalgae: screening studies towards biodiesel production. J Appl Phycol 25:931–936

    Article  CAS  Google Scholar 

  • Acién Fernández FG, García Camacho F, Sánchez Pérez JA, Fernández Sevilla JM, Molina Grima E (1997) A model for light distribution and average solar irradiance inside outdoor tubular photobioreactors for the microalgal mass culture. Biotechnol Bioeng 55:701–714

    Article  Google Scholar 

  • Acién Fernández FG, Fernández Sevilla JM, Sánchez Pérez JA, Molina Grima E, Chisti Y (2001) Airlift-driven external-loop tubular photobioreactors for outdoor production of microalgae: assessment of design and performance. Chem Eng Sci 56:2721–2732

    Article  Google Scholar 

  • APHA/AWWA/WEF (2012) Standard methods for the examination of water and wastewater, 22nd Edn.

  • Bahr M, Díaz I, Dominguez A, González Sánchez A, Muñoz R (2014) Microalgal biotechnology as a platform for an integral biogas upgrading and nutrient removal from anaerobic effluents. Environ Sci Technol 48:573–581

    Article  CAS  PubMed  Google Scholar 

  • Cabello J, Toledo-Cervantes A, Sánchez L, Revah S, Morales M (2015) Effect of the temperature, pH and irradiance on the photosynthetic activity by Scenedesmus obtusiusculus under nitrogen replete and deplete conditions. Bioresour Technol 181:128–135

    Article  CAS  PubMed  Google Scholar 

  • Campbell IH, Squire RJ (2010) The mountains that triggered the late neoproterozoic increase in oxygen: the second great oxidation event. Geochim Cosmochim Acta 74:4187–4206

    Article  CAS  Google Scholar 

  • Chi Z, O’Fallon JV, Chen S (2011) Bicarbonate produced from carbon capture for algae culture. Trends Biotechnol 29:537–541

    Article  CAS  PubMed  Google Scholar 

  • Chi Z, Xie Y, Elloy F, Zheng Y, Hu Y, Chen S (2013) Bicarbonate-based integrated carbon capture and algae production system with alkalihalophilic cyanobacterium. Bioresour Technol 133:513–521

    Article  CAS  PubMed  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    Article  CAS  PubMed  Google Scholar 

  • Costache TA, Acién Fernández FG, Morales MM, Fernández-Sevilla JM, Stamatin I, Molina E (2013) Comprehensive model of microalgae photosynthesis rate as a function of culture conditions in photobioreactors. Appl Microbiol Biotechnol 97:7627–7637

    Article  CAS  PubMed  Google Scholar 

  • Dillschneider R, Posten C (2013) Closed bioreactors as tools for microalgae production. In: Lee JW (ed) Advanced biofuels and bioproducts. Springer, New York, pp 629–649

    Chapter  Google Scholar 

  • Frumento D, Casazza AA, Al Arni S, Converti A (2013) Cultivation of Chlorella vulgaris in tubular photobioreactors: a lipid source for biodiesel production. Biochem Eng J 81:120–125

    Article  CAS  Google Scholar 

  • Giordano M, Beardall J, Raven JA (2005) CO2 concentrating mechanisms in algae: mechanisms, environmental modulation, and evolution. Annu Rev Plant Biol 56:99–131

    Article  CAS  PubMed  Google Scholar 

  • Jacobi A, Steinweg C, Sastre RR, Posten C (2012) Advanced photobioreactor LED illumination system: scale-down approach to study microalgal growth kinetics. Eng Life Sci 12:621–630

    Article  CAS  Google Scholar 

  • Levenspiel O (1999) Chemical reaction engineering, 3rd ed. John Wiley & Sons, Inc., New York

  • Li J, Stamato M, Velliou E, Jeffryes C, Agathos S (2015) Design and characterization of a scalable airlift flat panel photobioreactor for microalgae cultivation. J Appl Phycol 27:75–86

    Article  Google Scholar 

  • Lunka AA, Bayless DJ (2013) Effects of flashing light-emitting diodes on algal biomass productivity. J Appl Phycol 25:1679–1685

    Article  CAS  Google Scholar 

  • Madigan MM, Martinko JM, Parker J (2003) Brock biology of microorganisms, 10 th. Edn. Pearson, NY

  • Muñoz R, Guieysse B (2006) Algal-bacterial processes for the treatment of hazardous contaminants: a review. Water Res 40:2799–2815

    Article  PubMed  Google Scholar 

  • Nauman EB (2008) Chemical reactor design, optimization, and scale-up. Wiley, Hoboken

    Book  Google Scholar 

  • Peng L, Lan CQ, Zhang Z (2013) Evolution, detrimental effects, and removal of oxygen in microalga cultures: a review. Environ Prog Sustain Energy 32:982–988

    Article  CAS  Google Scholar 

  • Pirt SJ, Lee YK, Walach MR, Pirt MW, Balyuzi HHM, Bazin MJ (1983) A tubular bioreactor for photosynthetic production of biomass from carbon dioxide: design and performance. J Chem Technol Biotechnol 33(B):35–58

    Google Scholar 

  • Richmond A, Hu Q (eds) (2013) Handbook of microalgal culture. John Wiley & Sons, Ltd, Oxford

    Google Scholar 

  • Rubio F, Fernandez F, Perez J, Camacho F, Grima E (1999) Prediction of dissolved oxygen and carbon dioxide concentration profiles in tubular photobioreactors for microalgal culture. Biotechnol Bioeng 62:71–86

    Article  CAS  PubMed  Google Scholar 

  • Sorokin DY, Lysenko AM, Mityushina LL, Tourova TP, Jones BE, Rainey FA, Robertson LA, Kuenen GJ (2001) Thioalkalimicrobium aerophilum gen. nov., sp. nov. and Thioalkalimicrobium sibericum sp. nov., and Thioalkalivibrio versutus gen. nov., sp. nov., Thioalkalivibrio nitratis sp. nov. and Thioalkalivibrio denitrificans sp. nov., novel obligately alkaliphilic and obligately chemolithoautotrophic sulfur-oxidizing bacteria from soda lakes. Int J Syst Evol Microbiol 51:565–580

    Article  CAS  PubMed  Google Scholar 

  • Taub FB, McLaskey AK (2013) Pressure, O2, and CO2, in aquatic closed ecological systems. Adv Space Res 51:812–824

    Article  CAS  Google Scholar 

  • Thiansathit W, Keener TC, Khang S-J, Ratpukdi T, Hovichitr P (2015) The kinetics of Scenedesmus obliquus microalgae growth utilizing carbon dioxide gas from biogas. Biomass Bioenergy 76:79–85

    Article  CAS  Google Scholar 

  • Torzillo G (1997) Tubular bioreactors. In: Vonshak A (ed) Spirulina platensis (Arthrospira): physiology, cell biology, and biotechnology. Taylor & Francis, London, pp 101–115

    Google Scholar 

  • Tredici M (1999) Bioreactors photo. In: Flickinger M, Drew S (eds) Encyclopedia of bioprocess technology: fermentation, biocatalysis, and bioseparation, vol 1. Wiley, New York, pp 395–419

    Google Scholar 

  • Wang SK, Stiles AR, Guo C, Liu CZ (2014) Microalgae cultivation in photobioreactors: an overview of light characteristics. Eng Life Sci 14:550–559

  • Weissman JC, Goebel RP, Benemann JR (1988) Photobioreactor design: mixing, carbon utilization, and oxygen accumulation. Biotechnol Bioeng 31:336–344

    Article  CAS  PubMed  Google Scholar 

  • Yun UJ, Park HD (2003) Physical properties of an extracellular polysaccharide produced by Bacillus sp. CP912. Lett Appl Microbiol 36:282–287

    Article  PubMed  Google Scholar 

  • Zarrouk C (1966) Contribution à l’étude d’une cyanophycée. Influence de divers facteurs physiques et chimiques sur la croissance et photosynthese de Spirulina maxima. Thesis, University of Paris

Download references

Acknowledgments

We thank Margarita Elizabeth Cisneros Ortiz, Claudia Isela Granada Moreno, and Wenceslao Bonilla Blancas for their technical support. The financial support of the Mexican National Council on Science and Technology—CONACYT (Project CB-2011/168288) and of the Institute of Engineering of the National Autonomous University of Mexico (Project 3319) is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Armando González-Sánchez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de los Cobos-Vasconcelos, D., García-Cruz, E.L., Franco-Morgado, M. et al. Short-term evaluation of the photosynthetic activity of an alkaliphilic microalgae consortium in a novel tubular closed photobioreactor. J Appl Phycol 28, 795–802 (2016). https://doi.org/10.1007/s10811-015-0612-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-015-0612-7

Keywords

Navigation