Skip to main content
Log in

Rapid method for the assessment of cell lysis in microalgae cultures

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

A solid understanding of the effect of hydrodynamic forces encountered by microalgae in bioprocesses would benefit existing bioprocesses, eventually allowing an increase in their productivity. For this purpose, a sensitive method able to quantify cell lysis is crucial. Most of the available protocols and methods intended for this purpose were developed for animal or insect cells. In the case of microalgae, the commercial kits tested were unable to determine the cell lysis extension. The method proposed here was developed to relate the release of a cytoplasmic component (enzyme lactate dehydrogenase (LDH)) with cell lysis by measuring the NADH (reduced form of nicotinamide cofactor adenine dinucleotide) produced by LDH. Although different commercial kits based on similar processes are available, they are more complicated to use and not applicable to microalgae nor when longer-term tests are to be performed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aishvarya V, Pradhan N, Nayak RR, Sukla LB, Mishra BK (2012) Enhanced inorganic carbon uptake by Chlorella sp. IMMTCC-2 under autotrophic conditions for lipid production and CO2 sequestration. J Appl Phycol 24:1455–1463

    Article  CAS  Google Scholar 

  • Berges J, Franklin D, Harrison PJ (2001) Evolution of an artificial sea- water medium: improvements in enriched seawater, artificial water over the last two decades. J Phycol 37:1138–1145

    Article  Google Scholar 

  • Bergmeyer HU, Bernt E (1965) Enzymatic determination of ketone bodies in blood. Enzymol Biol Clin 19:65–76

    CAS  Google Scholar 

  • Camacho FG, Rodríguez JG, Mirón AS, Garcia MCC, Belarbi EH, Chisti Y, Molina Grima M (2007) Biotechnological significance of toxic marine dinoflagellates. Biotechnol Adv 25:176–194

    Article  CAS  PubMed  Google Scholar 

  • Camacho FG, Rodríguez JJG, Mirón AS, Belarbi EH, Chisti Y, Molina Grima E (2011) Photobioreactor scale-up for a shear-sensitive dinoflagellate microalga. Process Biochem 46:936–944

    Article  CAS  Google Scholar 

  • Chae SR, Hwang EJ, Shin HS (2006) Single cell protein production of Euglena gracilis and carbon dioxide fixation in an innovative photo-bioreactor. Bioresour Technol 97:322–329

    Article  CAS  PubMed  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    Article  CAS  PubMed  Google Scholar 

  • de-Bashan LE, Bashan Y (2010) Immobilized microalgae for removing pollutants: review of practical aspects. Bioresour Technol 101:1611–27

    Article  CAS  PubMed  Google Scholar 

  • Doria E, Longoni P, Scibilia L, Iazzi N, Cella R, Nielsen E (2012) Isolation and characterization of a Scenedesmus acutus strain to be used for bioremediation of urban wastewater. J Appl Phycol 24:375–383

    Article  CAS  Google Scholar 

  • Dorsey J, Yentsch CM, Mayo S, McKenna C (1989) Rapid analytical technique for the assessment of cell metabolic activity in marine microalgae. Cytometry 10:622–628

    Article  CAS  PubMed  Google Scholar 

  • Gallardo Rodríguez JJ, Sánchez Miron A, García Camacho F, Cerón García MC, Belarbi EH, Chisti Y, Molina Grima E (2009) Causes of shear sensitivity of the toxic dinoflagellate Protoceratium reticulatum. Biotechnol Prog 25:792–800

    Article  PubMed  Google Scholar 

  • Gallardo-Rodríguez J, Sánchez-Mirón A, García-Camacho F, López-Rosales L, Chisti Y, Molina-Grima E (2012) Bioactives from microalgal dinoflagellates. Biotechnol Adv 30:1673–84

    Article  PubMed  Google Scholar 

  • García Camacho F, Gallardo Rodríguez JJ, Sánchez Mirón A, Belarbi EH, Molina Grima E (2007) Determination of shear stress thresholds in toxic dinoflagellates cultured in shaken flasks. Process Biochem 42:1506–1515

    Article  Google Scholar 

  • González-López CV, Acién Fernández FG, Fernández-Sevilla JM, Sánchez Fernández JF, Molina Grima E (2012) Development of a process for efficient use of CO2 from flue gases in the production of photosynthetic microorganisms. Biotechnol Bioeng 109:1637–1650

    Article  PubMed  Google Scholar 

  • Gudin C, Chaumont D (1991) Cell fragility—the key problem of microalgae mass production in closed photobioreactors. Bioresour Technol 38:145–151

    Article  Google Scholar 

  • Guillard RRL, Hargraves PE (1993) Stichochrysis immobilis is a diatom, not a chrysophyte. Phycologia 32:234–236

    Article  Google Scholar 

  • Jameson DM, Thomas V, Zhou D (1989) Time-resolved fluorescence studies on NADH bound to mitochondrial malate dehydrogenase. Biochim Biophys Acta 994:187–190

    Article  CAS  PubMed  Google Scholar 

  • Jaouen P, Vandanjon L, Quéméneur F (1999) The shear stress of microalgal cell suspensions (Tetraselmis suecica) in tangential flow filtration systems: the role of pumps. Bioresour Technol 68:149–154

    Article  CAS  Google Scholar 

  • Kepp O, Galluzzi L, Lipinski M, Yuan J, Kroemer G (2011) Cell death assays for drug discovery. Nat Rev Drug Discov 10:221–237

    Article  CAS  PubMed  Google Scholar 

  • Kraemer G, Carmona R, Chopin T, Neefus C, Tang X, Yarish C (2004) Evaluation of the bioremediatory potential of several species of the red alga Porphyra using short-term measurements of nitrogen uptake as a rapid bioassay. J Appl Phycol 16:489–497

    Article  CAS  Google Scholar 

  • Mollet M, Ma N, Zhao Y, Brodkey R, Taticek R, Chalmers JJ (2004) Bioprocess equipment: characterization of energy dissipation rate and its potential to damage cells. Biotechnol Prog 20:1437–1448

    Article  CAS  PubMed  Google Scholar 

  • Moore A, Donahue CJ, Bauer KD (1998) Animal cell culture methods. Methods Cell Biol 57:265–278

    Article  CAS  PubMed  Google Scholar 

  • Sato M, Murata Y, Mizusawa M (2004) A simple and rapid dual fluorescence viability assay. Microbiol Cult Coll 20:53–59

    Google Scholar 

  • Singh S, Kate BN, Banerjee UC (2005) Bioactive compounds from cyanobacteria and microalgae: an overview. Crit Rev Biotechnol 25:73–95

    Article  CAS  PubMed  Google Scholar 

  • Wagner A, Marc A, Engasser JM, Einsele A (1992) The use of lactate dehydrogenase (LDH) release kinetics for the evaluation of death and growth of mammalian cells in perfusion reactors. Biotechnol Bioeng 39:320–326

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was funded by the Spanish Ministry of Education and Science (SAF2011-28883-C03-02) and the General Secretariat of Universities, Research and Technology of Andalusian Government (TEP-5375).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. J. Gallardo-Rodríguez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gallardo-Rodríguez, J.J., López-Rosales, L., Sánchez-Mirón, A. et al. Rapid method for the assessment of cell lysis in microalgae cultures. J Appl Phycol 28, 105–112 (2016). https://doi.org/10.1007/s10811-015-0585-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-015-0585-6

Keywords

Navigation