Skip to main content

Advertisement

Log in

Microalgal biofilms for biomass production

  • 5th Congress of the International Society for Applied Phycology
  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Microalgae are promising candidates for recycling of carbon dioxide (CO2) into renewable bioproducts. However, the low biomass concentration of current suspension culture systems leads to high water requirements, inefficient harvesting and high liquid transportation costs. Despite ongoing research, these still propose a challenge to the economic viability of microalgal cultivation. Microalgal biofilms provide an alternative approach to biomass production that could resolve these challenges by growing the cells attached to a surface, surrounded by a self-produced matrix of polymers. Microalgal biofilms have much higher biomass concentrations than suspension cultures, and the attached cells are easy to separate from the cultivation medium. However, cultivating microalgal biofilms requires the development of a purposefully designed cultivation system, especially due to interactions between cells and surface, persistent gradients in the biomass and the effects of flow, which play a critical role for biofilm productivity. A range of systems has been employed for the cultivation of microalgal biofilms, with biomass productivities of up to 60 grammes dry weight (g(DW)) m−2 day−1 (dry weight per ground area) outdoors and up to 80 g(DW) m−2 day−1 under laboratory conditions, respectively. However, there is considerable variation of reported results along with experimental conditions, which limits the capability for quantitative comparisons with other systems and hinders the identification of the drivers and variables that dictate microalgal biomass formation. Development of standard conditions and representative species would be required for closing this gap and for realising the full potential of microalgal biofilm cultivation as a viable process for industrial biomass production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abe K, Matsumura I, Imamaki A, Hirano M (2003) Removal of inorganic nitrogen sources from water by the algal biofilm of the aerial microalga Trentepohlia aurea. World J Microbiol Biotech 19:325–328

    Article  CAS  Google Scholar 

  • Adey WH, Luckett C, Jensen K (1993) Phosphorus removal from natural waters using controlled algal production. Restor Ecol 1:29–39

    Article  Google Scholar 

  • Adey WH, Kangas PC, Mulbry W (2011) Algal turf scrubbing: cleaning surface waters with solar energy while producing a biofuel. Biosci 61:434–441

    Article  Google Scholar 

  • Avendano-Herrera RE, Riquelme CE (2007) Production of a diatom-bacteria biofilm in a photobioreactor for aquaculture applications. Aquac Eng 36:97–104

    Article  Google Scholar 

  • Barranguet C, Veuger B, Van Beusekom SAM, Marvan P, Sinke JJ, Admiraal W (2005) Divergent composition of algal-bacterial biofilms developing under various external factors. Eur J Phycol 40:1–8

    Article  CAS  Google Scholar 

  • Benemann J (2013) Microalgae for biofuels and animal feeds. Energies 6:5869–5886

    Article  Google Scholar 

  • Bernstein HC, Kesaano M, Moll K, Smith T, Gerlach R, Carlson RP, Miller CD, Peyton BM, Cooksey KE, Gardner R, Sims RC (2014) Direct measurement and characterization of active photosynthesis zones inside wastewater remediating and biofuel producing microalgal biofilms. Bioresour Technol 156:206–215

    Article  CAS  PubMed  Google Scholar 

  • Blanken W, Janssen M, Cuaresma M, Libor Z, Bhaiji T, Wijffels RH (2014) Biofilm growth of Chlorella sorokiniana in a rotating biological contactor based photobioreactor. Biotechnol Bioeng 111:2436–2445

    Article  CAS  PubMed  Google Scholar 

  • Blankenship JR, Mitchell AP (2006) How to build a biofilm: a fungal perspective. Cur Opin Microbiol 9:588–594.

    Article  CAS  Google Scholar 

  • Boelee NC, Temmink H, Janssen M, Buisman CJN, Wijffels RH (2011) Nitrogen and phosphorus removal from municipal wastewater effluent using microalgal biofilms. Water Res 45:5925–5933

    Article  CAS  PubMed  Google Scholar 

  • Boelee NC, Janssen M, Temmink H, Shrestha R, Buisman CJ, Wijffels RH (2013a) Nutrient removal and biomass production in an outdoor pilot-scale phototrophic biofilm reactor for effluent polishing. Appl Biochem Biotechnol 172:405–422

    Article  PubMed  Google Scholar 

  • Boelee NC, Janssen M, Temmink H, Taparavičiūtė L, Khiewwijit R, Jánoska A, Buisman CJN, Wijffels RH (2013b) The effect of harvesting on biomass production and nutrient removal in phototrophic biofilm reactors for effluent polishing. J Appl Phycol 26:1439–1452

    Article  Google Scholar 

  • Boelee NC, Temmink H, Janssen M, Buisman CJN, Wijffels RH (2014) Balancing the organic load and light supply in symbiotic microalgal–bacterial biofilm reactors treating synthetic municipal wastewater. Ecol Eng 64:213–221

    Article  Google Scholar 

  • Borowitzka MA (2013) High-value products from microalgae—their development and commercialisation. J Appl Phycol 25:743–756

    Article  CAS  Google Scholar 

  • Bruno L, Di Pippo F, Antonaroli S, Gismondi A, Valentini C, Albertano P (2012) Characterization of biofilm-forming cyanobacteria for biomass and lipid production. J Appl Microbiol 113:1052–1064

    Article  CAS  PubMed  Google Scholar 

  • Buhmann M, Kroth PG, Schleheck D (2012) Photoautotrophic-heterotrophic biofilm communities: a laboratory incubator designed for growing axenic diatoms and bacteria in defined mixed-species biofilms. Environ Microbiol Rep 4:133–140

    Article  PubMed  Google Scholar 

  • Cao J, Yuan WQ, Pei ZJ, Davis T, Cui Y, Beltran M (2009) A preliminary study of the effect of surface texture on algae cell attachment for a mechanical-biological energy manufacturing system J Manuf Sci Eng-Trans ASME 131

  • Cheng PF, Ji B, Gao LL, Zhang W, Wang JF, Liu TZ (2013) The growth, lipid and hydrocarbon production of Botryococcus braunii with attached cultivation. Bioresour Technol 138:95–100

    Article  CAS  PubMed  Google Scholar 

  • Christenson LB, Sims RC (2011) Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts. Biotechnol Adv 29:686–702

    Article  CAS  PubMed  Google Scholar 

  • Christenson LB, Sims RC (2012) Rotating algal biofilm reactor and spool harvester for wastewater treatment with biofuels by-products. Biotechnol Bioeng 109:1674–1684

    Article  CAS  PubMed  Google Scholar 

  • Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM (1995) Microbial biofilms. Ann Rev Microbiol 49:711–745

    Article  CAS  Google Scholar 

  • Craggs RJ, Adey WH, Jessup BK, Oswald WJ (1996a) A controlled stream mesocosm for tertiary treatment of sewage. Ecol Eng 6:149–169

    Article  Google Scholar 

  • Craggs RJ, Adey WH, Jenson KR, St John MS, Green FB, Oswald WJ (1996b) Phosphorus removal from wastewater using an algal turf scrubber. Water Sci Technol 33:191–198

    Article  CAS  Google Scholar 

  • Cui Y, Yuan W (2013) Thermodynamic modeling of algal cell–solid substrate interactions. Appl Energy 112:485–492

    Article  CAS  Google Scholar 

  • De Beer D, Glud A, Epping E, Kühl M (1997) A fast-responding CO2 micro-electrode for profiling sediments, microbial mats, and biofilms. Limnol Oceanogr 42:1590–1600

    Article  Google Scholar 

  • Decho AW (2000) Microbial biofilms in intertidal systems: an overview. Continent Shelf Res 20:1257–1273

    Article  Google Scholar 

  • Demirbas MF (2011) Biofuels from algae for sustainable development. Appl Energy 88:3473–3480

    Article  CAS  Google Scholar 

  • Doucha J, Livansky K (2009) Outdoor open thin-layer microalgal photobioreactor: potential productivity. J Appl Phycol 21:111–117

    Article  CAS  Google Scholar 

  • Flemming HC, Wingender J (2010) The biofilm matrix. Nature Rev Microbiol 8:623–633

    CAS  Google Scholar 

  • Grobbelaar JU (2010) Microalgal biomass production: challenges and realities. Photosynth Res 106:135–144

    Article  CAS  PubMed  Google Scholar 

  • Gross M, Henry W, Michael C, Wen Z (2013) Development of a rotating algal biofilm growth system for attached microalgae growth with in situ biomass harvest. Bioresour Technol 150:195–201

    Article  CAS  PubMed  Google Scholar 

  • Guzzon A, Bohn A, Diociaiuti M, Albertano P (2008) Cultured phototrophic biofilms for phosphorus removal in wastewater treatment. Water Res 42:4357–4367

    Article  CAS  PubMed  Google Scholar 

  • Haubner N, Schumann R, Karsten U (2006) Aeroterrestrial microalgae growing in biofilms on facades—response to temperature and water stress. Microb Ecol 51:285–293

    Article  CAS  PubMed  Google Scholar 

  • Higgins BT, Kendall A (2012) Life cycle environmental and cost impacts of using an algal turf scrubber to treat dairy wastewater. J Ind Ecol 16:436–447

    Article  CAS  Google Scholar 

  • Hu Q, Kurano N, Kawachi M, Iwasaki I, Miyachi S (1998) Ultrahigh-cell-density culture of a marine green alga Chlorococcum littorale in a flat-plate photobioreactor. Appl Microbiol Biotechnol 49:655–662

    Article  CAS  Google Scholar 

  • Ji B, Zhang W, Zhang N, Wang J, Lutzu GA, Liu T (2013a) Biofilm cultivation of the oleaginous microalgae Pseudochlorococcum sp. Bioprocess Biosyst Eng 7:1369–1375

    Google Scholar 

  • Ji C, Wang J, Zhang W, Liu J, Wang H, Gao L, Liu T (2013b) An applicable nitrogen supply strategy for attached cultivation of Aucutodesmus obliquus. J Appl Phycol 26:173–180

    Article  Google Scholar 

  • Johnson MB, Wen Z (2010) Development of an attached microalgal growth system for biofuel production. Appl Microbiol Biotechnol 85:525–534

    Article  CAS  PubMed  Google Scholar 

  • Kebede-Westhead E, Pizarro C, Mulbry WW (2004) Treatment of dairy manure effluent using freshwater algae: elemental composition of algal biomass at different manure loading rates. J Agri Food Chem 52:7293–7296

    Article  CAS  Google Scholar 

  • Kebede-Westhead E, Pizarro C, Mulbry WW (2006) Treatment of swine manure effluent using freshwater algae: production, nutrient recovery, and elemental composition of algal biomass at four effluent loading rates. J Appl Phycol 18:41–46

    Article  Google Scholar 

  • Kesaano M, Sims RC (2014) Algal biofilm based technology for wastewater treatment. Algal Res 5:231–240

    Article  Google Scholar 

  • Khatoon H, Yusoff F, Banerjee S, Shariff M, Bujang JS (2007) Formation of periphyton biofilm and subsequent biofouling on different substrates in nutrient enriched brackishwater shrimp ponds. Aquaculture 273:470–477

    Article  Google Scholar 

  • Kliphuis AMJ, de Winter L, Vejrazka C, Martens DE, Janssen M, Wijffels RH (2010) Photosynthetic efficiency of Chlorella sorokiniana in a turbulently mixed short light-path photobioreactor. Biotechnol Prog 26:687–696

    Article  CAS  PubMed  Google Scholar 

  • Largeau C, Casadevall E, Berkaloff C, Dhamelincourt P (1980) Sites of accumulation and composition of hydrocarbons in Botryococcus braunii. Phytochemistry 19:1043–1051

    Article  CAS  Google Scholar 

  • Lee Y-K (2001) Microalgal mass culture systems and methods: their limitation and potential. J Appl Phycol 13:307–315

    Article  Google Scholar 

  • Liu T, Wang J, Hu Q, Cheng P, Bei J, Liu J, Chen Y, Zhang W, Chen X, Chen L, Gao L, Ji C, Wang H (2013) Attached cultivation technology of microalgae for efficient biomass feedstock production. Bioresour Technol 127:216–222

    Article  CAS  PubMed  Google Scholar 

  • Mieszkin S, Callow ME, Callow JA (2013) Interactions between microbial biofilms and marine fouling algae: a mini review. Biofouling 29:1097–1113

    Article  CAS  PubMed  Google Scholar 

  • Milledge JJ (2011) Commercial application of microalgae other than as biofuels: a brief review. Rev Environ Sci Bio-Technol 10:31–41

    Article  Google Scholar 

  • Molina Grima E, Belarbi E-H, Acién Fernández F, Robles Medina A, Chisti Y (2003) Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv 20:491–515

    Article  CAS  PubMed  Google Scholar 

  • Molino PJ, Wetherbee R (2008) The biology of biofouling diatoms and their role in the development of microbial slimes. Biofouling 24:365–379

    Article  CAS  PubMed  Google Scholar 

  • Mulbry W, Wilkie AC (2001) Growth of benthic freshwater algae on dairy manures. J Appl Phycol 13:301–306

    Article  Google Scholar 

  • Mulbry W, Westhead EK, Pizarro C, Sikora L (2005) Recycling of manure nutrients: use of algal biomass from dairy manure treatment as a slow release fertilizer. Bioresour Technol 96:451–458

    Article  CAS  PubMed  Google Scholar 

  • Mulbry W, Kondrad S, Pizarro C, Kebede-Westhead E (2008) Treatment of dairy manure effluent using freshwater algae: algal productivity and recovery of manure nutrients using pilot-scale algal turf scrubbers. Bioresour Technol 99:8137–8142

    Article  CAS  PubMed  Google Scholar 

  • Murphy TE, Berberoglu H (2014) Flux balancing of light and nutrients in a biofilm photobioreactor for maximizing photosynthetic productivity. Biotechnol Prog 30:348–359

    Article  CAS  PubMed  Google Scholar 

  • Murphy TE, Fleming E, Bebout L, Bebout B, Berberoglu H (2013) A novel micronial cell cultivation platform for space applications. Amer Astronaut Soc Sci Technol Ser 114:335–338

    Google Scholar 

  • Murphy TE, Fleming E, Berberoglu H (2014) Vascular structure design of an artificial tree for microbial cell cultivation and biofuel production. Transp Porous Med 104:25–41.

    Article  CAS  Google Scholar 

  • Naumann T, Çebi Z, Podola B, Melkonian M (2013) Growing microalgae as aquaculture feeds on twin-layers: a novel solid-state photobioreactor. J Appl Phycol 25:1413–1420

    Article  CAS  Google Scholar 

  • Nichols HW, Bold HC (1965) Trichosarcina polymorpha Gen. et Sp. Nov J Phycol 1:34–38

    Article  Google Scholar 

  • Nowack EC, Podola B, Melkonian M (2005) The 96-well twin-layer system: a novel approach in the cultivation of microalgae. Protist 156:239–251

    Article  PubMed  Google Scholar 

  • O’Toole G, Kaplan HB, Kolter R (2000) Biofilm formation as microbial development. Ann Rev Microbiol 54:49–79

    Article  Google Scholar 

  • Orandi S, Lewis DM, Moheimani NR (2012) Biofilm establishment and heavy metal removal capacity of an indigenous mining algal-microbial consortium in a photo-rotating biological contactor. J Ind Microbiol Biotechnol 39:1321–1331

    Article  CAS  PubMed  Google Scholar 

  • Ozkan A, Berberoglu H (2013) Adhesion of algal cells to surfaces. Biofouling 29:469–482

    Article  PubMed  Google Scholar 

  • Ozkan A, Kinney K, Katz L, Berberoglu H (2012) Reduction of water and energy requirement of algae cultivation using an algae biofilm photobioreactor. Bioresour Technol 114:542–548

    Article  CAS  PubMed  Google Scholar 

  • Pizarro C, Kebede-Westhead E, Mulbry W (2002) Nitrogen and phosphorus removal rates using small algal turfs grown with dairy manure. J Appl Phycol 14:469–473

    Article  CAS  Google Scholar 

  • Pizarro C, Mulbry W, Blersch D, Kangas P (2006) An economic assessment of algal turf scrubber technology for treatment of dairy manure effluent. Ecol Eng 26:321–327

    Article  Google Scholar 

  • Posadas E, Garcia-Encina PA, Soltau A, Dominguez A, Diaz I, Munoz R (2013) Carbon and nutrient removal from centrates and domestic wastewater using algal-bacterial biofilm bioreactors. Bioresour Technol 139:50–58

    Article  CAS  PubMed  Google Scholar 

  • Qian PY, Lau SCK, Dahms HU, Dobretsov S, Harder T (2007) Marine biofilms as mediators of colonization by marine macroorganisms: implications for antifouling and aquaculture. Mar Biotechnol 9:399–410

    Article  CAS  PubMed  Google Scholar 

  • Riding R (2000) Microbial carbonates: the geological record of calcified bacterial–algal mats and biofilms. Sedimentology 47:179–214

    Article  CAS  Google Scholar 

  • Sakiadis B (1961) Boundary-layer behavior on continuous solid surfaces: II. The boundary layer on a continuous flat surface. AIChE J 7:221–225

    Article  CAS  Google Scholar 

  • Schnurr PJ, Espie GS, Allen DG (2013) Algae biofilm growth and the potential to stimulate lipid accumulation through nutrient starvation. Bioresour Technol 136:337–344

    Article  CAS  PubMed  Google Scholar 

  • Schultz MP, Bendick JA, Holm ER, Hertel WM (2011) Economic impact of biofouling on a naval surface ship. Biofouling 27:87–98

    Article  CAS  PubMed  Google Scholar 

  • Shen Y, Xu X, Zhao Y, Lin X (2014a) Influence of algae species, substrata and culture conditions on attached microalgal culture. Bioprocess Biosyst Eng 37:441–450

    Article  CAS  PubMed  Google Scholar 

  • Shen Y, Chen C, Chen W, Xu X (2014b) Attached culture of Nannochloropsis oculata for lipid production. Bioprocess Biosys Eng 37:1743–1748

    Article  CAS  Google Scholar 

  • Shi J, Podola B, Melkonian M (2007) Removal of nitrogen and phosphorus from wastewater using microalgae immobilized on twin layers: an experimental study. J Appl Phycol 19:417–423

    Article  CAS  Google Scholar 

  • Shi J, Podola B, Melkonian M (2014) Application of a prototype-scale twin-layer photobioreactor for effective N and P removal from different process stages of municipal wastewater by immobilized microalgae. Bioresour Technol 154:260–266

    Article  CAS  PubMed  Google Scholar 

  • Slegers PM, Wijffels RH, van Straten G, van Boxtel AJB (2011) Design scenarios for flat panel photobioreactors. Applied Energy 88:3342–3353

    Article  CAS  Google Scholar 

  • Stanier R, Kunisawa R, Mandel M, Cohen-Bazire G (1971) Purification and properties of unicellular blue-green algae (order Chroococcales). Bact Rev 35:171–205

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stephens E, Ross IL, Hankamer B (2013) Expanding the microalgal industry—continuing controversy or compelling case. Cur Opin Chem Biol 17:444–452

    Article  CAS  Google Scholar 

  • Thompson RC, Moschella PS, Jenkins SR, Norton TA, Hawkins SJ (2005) Differences in photosynthetic marine biofilms between sheltered and moderately exposed rocky shores. Mar Ecol Progr Ser 296:53–63

    Article  Google Scholar 

  • Vert M, Doi Y, Hellwich KH, Hess M, Hodge P, Kubisa P, Rinaudo M, Schue F (2012) Terminology for biorelated polymers and applications (IUPAC Recommendations 2012). Pure Appl Chem 84:377–410

    Article  CAS  Google Scholar 

  • Walne PR (1970) Studies on the food value of nineteen genera of algae to juvenile bivalves of the genera Ostrea, Crassostrea, Mercenaria and Mytilus. Fishery Investigations Series II, Volume 26, Number 5.London: Ministry of Agriculture, Fisheries and Food. 62p

  • Wijffels RH, Kruse O, Hellingwerf KJ (2013) Potential of industrial biotechnology with cyanobacteria and eukaryotic microalgae. Curr Opin Biotechnol 24:405–413

    Article  CAS  PubMed  Google Scholar 

  • Wiley P (2013) Microalgae cultivation using offshore membrane enclosures for growing algae (OMEGA). J Sustain Bioen Syst 03:18–32

    Google Scholar 

  • Wilkie AC, Mulbry WW (2002) Recovery of dairy manure nutrients by benthic freshwater algae. Bioresour Technol 84:81–91

    Article  CAS  PubMed  Google Scholar 

  • Wolf G, Picioreanu C, van Loosdrecht MC (2007) Kinetic modeling of phototrophic biofilms: the PHOBIA model. Biotechnol Bioeng 97:1064–1079

    Article  CAS  PubMed  Google Scholar 

  • Zamalloa C, Boon N, Verstraete W (2013) Decentralized two-stage sewage treatment by chemical-biological flocculation combined with microalgae biofilm for nutrient immobilization in a roof installed parallel plate reactor. Bioresour Technol 130:152–160

    Article  CAS  PubMed  Google Scholar 

  • Zippel B, Rijstenbil J, Neu TR (2007) A flow-lane incubator for studying freshwater and marine phototrophic biofilms. J Microbiol Meth 70:336–345

    Article  CAS  Google Scholar 

  • Zittelli GC, Biondi N, Rodolfi L, Tredici MR (2013) Photobioreactors for mass production of microalgae. In: Richmond A, Hu Q (eds) Handbook of microalgal culture: applied phycology and biotechnology, 2nd edn. Wiley, London, pp 225–266

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kirsten Heimann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berner, F., Heimann, K. & Sheehan, M. Microalgal biofilms for biomass production. J Appl Phycol 27, 1793–1804 (2015). https://doi.org/10.1007/s10811-014-0489-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-014-0489-x

Keywords

Navigation