Skip to main content
Log in

Effect of nitrogen source and acclimatization on specific growth rates of microalgae determined by a high-throughput in vivo microplate autofluorescence method

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Specific growth rates (SGR) of freshwater algae species (Chlorella vulgaris, Auxenochlorella protothecoides, and Chlorella sorokiniana) and the marine species Nannochloropsis oculata on various nitrogen sources (ammonium carbonate, ammonium chloride, sodium nitrate, and urea) could be determined by in vivo chlorophyll-a autofluorescence. These preferences could be determined before large pH changes occurred in the media, with no significant difference (P > 0.05) between buffered and non-buffered media. In all algal species, acclimatization was observed with no significant difference (P > 0.05) between SGRs of the second and third cultivations. ANOVA of SGRs in the acclimatized second and third cultivations revealed preferences for nitrogen sources among most of the algae; C. vulgaris preferred sodium nitrate over other nitrogen sources, A. protothecoides adapted to urea after no growth in the first cultivation, and the SGRs of N. oculata showed an aversion for sodium nitrate over other nitrogen sources (P < 0.05).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bates SS (1976) Effects of light and ammonium on nitrate uptake by two species of estuarine phytoplankton. Limnol Oceanog 21:212–218

    Article  CAS  Google Scholar 

  • Blaise C, Vasseur P (2005) Algal microplate toxicity test. In: Blaise C, Vasseur P (eds) Small-scale freshwater toxicity investigations. Springer, Berlin, pp 137–179

    Chapter  Google Scholar 

  • Caperon J, Ziemann DA (1976) Synergistic effects of nitrate and ammonium ion on the growth and uptake kinetics of Monochrysis lutheri in continuous culture. Mar Biol 36:73–84

    Article  CAS  Google Scholar 

  • Davis EA, Dedrick J, French CS, Milner HW, Myers J, Smith JHC, Spoehr HA (1953) Laboratory experiments on Chlorella culture at the Carnegie Institution of Washington Department of Plant Biology. In: Burlew JS (ed) Algal culture from laboratory to pilot plant. Carnegie Institution of Washington Publication no. 600. Carnegie Institution, Washington DC, pp 105–153

  • Dortch Q (1982) Effect of growth conditions on accumulation of internal nitrate, ammonium, amino acids and protein in three marine diatoms. J Exp Mar Bio Ecol 61:243–264

    Article  CAS  Google Scholar 

  • Dortch Q (1990) The interaction between nitrate and ammonium uptake in phytoplankton. Mar Ecol Prog Ser 61:183–201

    Article  CAS  Google Scholar 

  • Dortch Q, Conway H (1984) Interactions between nitrate and ammonium uptake: variation with growth rate, nitrogen source and species. Mar Biol 79:51–164

    Article  Google Scholar 

  • Eisentraeger A, Dott W, Klein J, Hahn S (2003) Comparative studies on algal toxicity testing using fluorometric microplate and Erlenmeyer flask growth-inhibition assays. Ecotoxicol Environ Saf 54:346–354

    Article  CAS  PubMed  Google Scholar 

  • Flynn JK, Michael JR, Hipkin F, Hipkin CR (1997) Modeling the interactions between ammonium and nitrate uptake in marine phytoplankton. Phil Trans R Soc B 352:1625–1645

    Article  CAS  PubMed Central  Google Scholar 

  • Grobbelaar JU (2004) Algal nutrition: mineral nutrition. In: Richmond A (ed) Handbook of microalgal culture: biotechnology and applied phycology. Blackwell Science, Oxford, p 104

    Google Scholar 

  • Guilard RR, Lorenzen C (1972) Yellow-green algae with chlorophyllide. J Phycol 8:10–14

    Google Scholar 

  • Guillard RR (1975) Culture of phytoplankton for feeding marine invertebrates. In: Guillard RR (ed) Culture of marine invertebrate animals. Springer, Berlin, pp 29–60

    Chapter  Google Scholar 

  • Harisson PT, Berges JA (2005) Marine culture media. In: Andersen RA (ed) Algal culturing techniques. Elsevier Academic Press, Burlington, pp 21–34

    Google Scholar 

  • Hodson RC, Thompson JF (1969) Metabolism of urea by Chlorella vulgaris. Plant Physiol 44:691–696

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hyenstrand P, Burkert U, Pettersson A, Blomqvist P (2000) Competition between the green alga Scenedesmus and the cyanobacterium Synechococcus under different modes of inorganic nitrogen supply. Hydrobiologia 435:91–98

    Article  Google Scholar 

  • Hildebrand M (2005) Cloning and functional characterization of ammonium transporters from the marine diatom Cylindrotheca fusiformis (Bacillariophyceae). J Phycol 41:105e113. doi:10.1111/j.1529-8817.2005.04108.x

  • Kudela RM, Cochlan WP (2000) Nitrogen and carbon uptake kinetics and the influence of irradiance for a red tide bloom off southern California. Aquat Microb Ecol 21:31–47

    Article  Google Scholar 

  • L’Helguen S, Maguer JF, Caradec J (2008) Inhibition kinetics of nitrate uptake by ammonium in size-fractionated oceanic phytoplankton communities: implications for new production and F-ratio estimates. J Plankton Res 30:1179–1188

    Article  Google Scholar 

  • MacIntyre HL, Cullen JJ (2005) Measuring growth rates in microalgal cultures. In: Andersen RA (ed) Algal culturing techniques. Elsevier Academic Press, Burlington, p 307

    Google Scholar 

  • Maguer J-F, L’Helguen S, Madec C et al (2007) Nitrogen uptake and assimilation kinetics in Alexandrium minutum (Dinophyceae): effect of N-limited growth rate on nitrate and ammonium interactions. J Phycol 43:295–303

    Article  CAS  Google Scholar 

  • Mayer P, Cuhel R, Nyholm N (1997) A simple in vitro fluorescence method for biomass measurements in algal growth inhibition tests. Water Res 31:2525–2531

    Article  CAS  Google Scholar 

  • Needoba JA, Harrison PJ (2004) Influence of low light and a light: dark cycle on NO3 uptake, intracellular NO3 , and nitrogen isotope fractionation by marine phytoplankton. J Phycol 40:505–516

    Article  CAS  Google Scholar 

  • Peccia J, Haznedaroglu B, Gutierrez J, Zimmerman JB (2013) Nitrogen supply is an important driver of sustainable microalgae biofuel production. Trends Biotechnol 31:134–138

    Article  CAS  PubMed  Google Scholar 

  • Perez-Garcia O, Escalante FM, De-Bashan LE, Bashan Y (2011) Heterotrophic cultures of microalgae: metabolism and potential products. Water Res 45:11–36

    Article  CAS  PubMed  Google Scholar 

  • Rebolloso-Fuentes MM, Navarro-Perez A, Garcia-Camacho F, Ramos-Miras JJ, Guil-Guerrero JL (2001) Biomass nutrient profiles of the microalga Nannochloropsis. J Agr Food Chem 49:2966–2972

    Article  CAS  Google Scholar 

  • Sharma R, Singh GP, Sharma VK (2012) Effects of culture conditions on growth and biochemical profile of Chlorella vulgaris. J Plant Pathol Microbiol 3:1–6

    Article  CAS  Google Scholar 

  • Shen Y, Yuan W, Pei Z, Mao E (2010) Heterotrophic culture of Chlorella protothecoides in various nitrogen sources for lipid production. Appl Biochem Biotechnol 160:1674–1684

    Article  CAS  PubMed  Google Scholar 

  • Shi X, Zhang X, Chen F (2000) Heterotrophic production of biomass and lutein by Chlorella protothecoides on various nitrogen sources. Enzym Microb Tech 27:312–318

    Article  CAS  Google Scholar 

  • Shihira I, Krauss RW (1965) Chlorella: physiology and taxonomy of forty-one isolates. University of Maryland College Park, Maryland, pp 1–97

    Google Scholar 

  • Solomon CM, Glibert PM (2008) Urease activity in five phytoplankton species. Aquatic Microb Ecol 52:149

    Article  Google Scholar 

  • Sorokin C (1959) Tabular comparative data for the low-temperature and high-temperature strains of Chlorella. Nature 184:613–614

    Article  CAS  PubMed  Google Scholar 

  • Sturm BS, Lamer SL (2011) An energy evaluation of coupling nutrient removal from wastewater with algal biomass production. Appl Energy 88:3499–3506

    Article  CAS  Google Scholar 

  • Sunda WG, Price NM, Morel FMM (2005) Trace metal ion buffers and their use in culture studies. In: Andersen RA (ed) Algal culturing techniques. Elsevier Academic Press, Burlington, pp 65–82

    Google Scholar 

  • Syrett PJ, Morris I (1963) The inhibition of nitrate assimilation by ammonium in Chlorella. Biochim Biophys Acta 67:566–575

    Article  CAS  Google Scholar 

  • Terry KL (1982) Nitrate uptake and assimilation in Thalassiosira weissflogii and Phaeodactylum tricornutum: interactions with photosynthesis and with uptake of other ions. Mar Biol 69:21–30

    Article  CAS  Google Scholar 

  • USEPA (2010) Inventory of U.S. greenhouse gas emissions and sinks: 1990–2008. (http://www.epa.gov/climatechange/emissions/usinventoryreport.html)

  • Wood AM, Everroad RC, Wingard LM (2005) Measuring growth rates in microalgal cultures. In: Andersen RA (ed) Algal culturing techniques. Elsevier Academic Press, Burlington, pp 269–285

    Google Scholar 

Download references

Acknowledgments

This work was funded by the European Commission (EC) Economically and Ecologically Efficient Water Management in the European Chemical Industry (E4Water) project (grant agreement no.: 280756).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irini Angelidaki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Podevin, M., De Francisci, D., Holdt, S.L. et al. Effect of nitrogen source and acclimatization on specific growth rates of microalgae determined by a high-throughput in vivo microplate autofluorescence method. J Appl Phycol 27, 1415–1423 (2015). https://doi.org/10.1007/s10811-014-0468-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-014-0468-2

Keywords

Navigation