Skip to main content

Advertisement

Log in

Growth and photosynthetic pigments of Gracilariopsis tenuifrons (Rhodophyta, Gracilariaceae) under high light in vitro culture

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

High levels of irradiance may affect the growth and development of photosynthetic organisms, changing concentrations of carotenoids and chlorophylls. These changes may indicate different photoprotection strategies. In this study, gametophytic apical portions of Gracilariopsis tenuifrons were cultivated under controlled laboratory conditions for 1 week, at different light irradiances: 60 (control), 600, and 1,000 μmol photons m−2 s−1. Growth rate, amount, and composition of pigments were analyzed daily. Color of seaweeds exposed to 600 and 1000 μmol photons m−2 s−1 varied along the days, from red to yellowish, suggesting a decrease in vital processes as photosynthesis and growth. However, no decrease in biomass was observed. Actually, there was an increase at growth rates for the algae kept under higher light intensities. The main registered pigments were chlorophyll a, β-carotene, and zeaxanthin. β-carotene and chlorophyll a levels were lower in algae exposed to high light intensity. In treatment exposed to 600 μmol photons m−2 s−1, this reduction was 42 and 35 %, respectively, while in those exposed to 1000 μmol photons m−2 s−1 the values were 55 and 50 % lower than the control. The lower levels of these pigments may be associated with the reduction in energy harvesting by the photosynthetic complexes-antennae, in an effort to dissipate the high excitation impinged over the photosynthesis system as a whole. For zeaxanthin levels, a 20 % increase was observed in the beginning of the experiment, which was followed by a drop to the initial levels, suggesting the role of this pigment in this alga’s photoprotection process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andersson M, Schubert H, Pedersén M, Snoeijs P (2006) Different patterns of carotenoid composition and photosynthesis acclimation in two tropical red algae. Mar Biol 149:653–665

    Article  CAS  Google Scholar 

  • Archibald JM, Keeling PJ (2002) Recycled plastids: a “green movement” in eukaryotic evolution. Trends Gen 18:577–584

    Article  CAS  Google Scholar 

  • Betterle N, Ballottari M, Hienerwadel R, Dall’Osto L, Bassi R (2010) Dynamics of zeaxanthin binding to the photosystem II monomeric antenna protein Lhcb6 (CP24) and modulation of its photoprotection properties. Arch Biochem Biophys 504:67–77

    Article  CAS  PubMed  Google Scholar 

  • Bouzon ZL, Chow F, Zitta CS, Santos RW, Ouriques LC, Felix MR, Osorio LKP, Gouveia C, Martins RP, Latini A, Ramlov F, Maraschin M, Schmidt ÉC (2012) Effects of natural radiation, photosynthetically active radiation and artificial ultraviolet radiation-B on the chloroplast organization and metabolism of Porphyra acanthophora var. brasiliensis (Rhodophyta, Bangiales). Micros Microanal 18:1467–1479

    Article  CAS  Google Scholar 

  • Breemen RB, van Dong L, Pajkovic ND (2011) Atmospheric pressure chemical ionization tandem mass spectrometry of carotenoids. Int J Mass Spectrom 312:163–172

    Article  Google Scholar 

  • Britton G (2008) Functions of intact carotenoids. In: Britton G, Liaaen-Jensen S, Pfander H (eds) Carotenoids, Volume 4: Natural Functions. Birkhäuser Verlag, pp 189–212

  • Carnicas E, Jiménez C, Niell FX (1999) Effects of changes of irradiance on the pigment composition of Gracilaria tenuistipitata var liui Zhang et Xia. J Photochem Photobiol B: Biol 50:149–158

    Article  CAS  Google Scholar 

  • Cunningham FX, Dennenberg RJ, Mustardy L, Jursinic PA, Gantt E (1989) Stoichiometry of Photosystem I Photosystem II and phycobilisomes in the red alga Porphyridium cruentum as a function of growth irradiance. Plant Physiol 91:1179–1187

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dall’Osto L, Caffarri S, Bassi R (2005) A mechanism of nonphotochemical energy dissipation independent from PsbS revealed by a conformational change in the antenna protein CP26. Plant Cell 17:1217–1232

    Article  PubMed Central  PubMed  Google Scholar 

  • Dall’Osto L, Fiore A, Cazzaniga S, Giuliano G, Bassi R (2007) Different roles of alpha- and beta-branch xanthophylls in photosystem assembly and photoprotection. J Biol Chem 282:35056–35068

    Article  PubMed  Google Scholar 

  • Dall’Osto L, Cazzaniga S, Havaux M, Bassi R (2010) Enhanced photoprotection by protein-bound vs free xanthophyll pools: a comparative analysis of chlorophyll b and xanthophyll biosynthesis mutants. Mol Plant 3:576–593

    Article  PubMed  Google Scholar 

  • Díez I, Muguerza N, Santolaria S, Ganzedo U, Gorostiaga JM (2012) Seaweed assemblage changes in the eastern Cantabrian Sea and their potential relationship to climate change. Estuar Coast Shelf Sci 99:108–120

    Article  Google Scholar 

  • Edwards P (1970) Illustrated guide to the seaweeds and sea grasses in the vicinity of Porto Aransas Texas. Contrib Mar Sci 15:1–228

    Google Scholar 

  • Esteban R, Martínez B, Fernández-Marín B, Becerril JM, García-Plazaola JI (2009) Carotenoid composition in Rhodophyta: insights into xanthophyll regulation in Corallina elongata. Eur J Phycol 44:221–230

    Article  CAS  Google Scholar 

  • Faria AF, De Hasegawa PN, Chagas EA, Pio R, Purgatto E, Mercadante AZ (2009) Cultivar influence on carotenoid composition of loquats from Brazil. J Food Compos Anal 22:196–203

    Article  Google Scholar 

  • Gauthier-Jaques A, Bortlik K, Hau J, Fay LB (2001) Improved method to track chlorophyll degradation. J Agric Food Chem 49:1117–1122

    Article  CAS  PubMed  Google Scholar 

  • Gómez A, Millán J (1997) Cultivo experimental de Gracilaria dentata Agardh y de Gracilariopsis tenuifrons (Bird et Oliveira) (Rhodophyta: Gigartinales) en la isla de Margarita, Venezuela. Rev Biol Mar Ocean 32:137–144

    Google Scholar 

  • Gouveia C, Kreusch M, Schmidt ÉC, Felix MRL, Osorio LKP, Pereira DT, Santos R, Ouriques LC, Martins RP, Latini A, Ramlov F, Carvalho TJG, Chow F, Maraschin M, Bouzon ZL (2013) The effects of lead and copper on the cellular architecture and metabolism of the red alga Gracilaria domingensis. Microsc Microanal 19:513–524

    Article  CAS  PubMed  Google Scholar 

  • Grossman AR, Schaeffer MR, Chiang GG, Collier JL (1993) The phycobilisome a light-harvesting complex responsive to environmental conditions. Microbiol Rev 57:725–749

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hanelt D (1996) Photoinhibition of photosynthesis in marine macroalgae. In: Figueroa FL, Jiménez C, Pérez-Lloréns JL, Niell FX (eds) Underwater Light and Algal Photobiology Sci Mar 60 (Suppl1), Barcelona, pp 243–248

  • Havaux M, Niyogi KK (1999) The violaxanthin cycle protects plants from photooxidative damage by more than one mechanism. Proc Natl Acad Sci USA 96:8762–8767

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Havaux M, Dall’osto L, Bassi R (2007) Zeaxanthin has enhanced antioxidant capacity with respect to all other xanthophylls in Arabidopsis leaves and functions independent of binding to PSII antennae. Plant Physiol 145:1506–1520

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Holt NE, Fleming GR, Niyogi KK (2004) Toward an understanding of the mechanism of nonphotochemical quenching in green plants. Biochem 43:8281–8289

    Article  CAS  Google Scholar 

  • Jones WE, Williams R (1966) The seaweeds of Dale. Field Stud 2:303–330

    Google Scholar 

  • Krieger-Liszkay A (2005) Singlet oxygen production in photosynthesis. J Exp Bot 56:337–346

    Article  CAS  PubMed  Google Scholar 

  • Lignell A, Pedersen M (1989) Agar composition as a function of morphology and growth rate studies on some morphological strains of Gracilaria secundala and Gracilaria verrucosa (Rhodophyta). Bot Mar 32:219–227

  • Marquardt J, Hanelt D (2004) Carotenoid composition of Delesseria lancifolia and other marine red algae from polar and temperate habitats. Eur J Phycol 39:285–292

    Article  CAS  Google Scholar 

  • Mimuro M, Akimoto S (2003) Energy transfer processes from fucoxanthin and peridinin to chlorophyll. In: Larkum AWD, Douglas S, Raven JA (eds) Photosynthesis in algae. Kluwer Academic Publishers, Dordrecht, pp 335–349

    Chapter  Google Scholar 

  • Müller P, Li X-P, Niyogi KK (2001) Non-photochemical quenching: a response to excess light energy. Plant Physiol 125:1558–1566

    Article  PubMed Central  PubMed  Google Scholar 

  • Murchie EH, Niyogi KK (2011) Manipulation of photoprotection to improve plant photosynthesis. Plant Physiol 155:86–92

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Niyogi KK, Grossman AR, Björkman O (1998) Arabidopsis mutants define a central role for the xanthophyll cycle in the regulation of photosynthetic energy conversion. Plant Cell 10:1121–1134

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Osmond CB (1994) What is photoinhibition? Some insights from comparison of shade and sun plants. In: Baker RR, Bowyer JR (eds) Photoinhibition of photosynthesis: from molecular mechanisms to the field. Bios Scientific Publications, Oxford, pp 1–24

    Google Scholar 

  • Powles SB (1984) Photoinhibition of photosynthesis induced by visible light. Annu Rev Plant Physiol 35:15–44

    Article  CAS  Google Scholar 

  • Qing H, Zhang YJ, Chai Z, Wu H, Wen S, He P (2014) Gracilariopsis longissima as biofilter for an Integrated Multi-Trophic Aquaculture (IMTA) system with Sciaenops ocellatus: bioremediation efficiency and production in a recirculating system. Ind J Geo-Mar Sc 43:528–537

    Google Scholar 

  • Quintano E, Ganzedo U, Díez I, Figueroa FL, Gorostiaga JM (2013) Solar radiation (PAR and UVA) and water temperature in relation to biochemical performance of Gelidium corneum (Gelidiales, Rhodophyta) in subtidal bottoms off the Basque coast. J Sea Res 83:47–55

    Article  Google Scholar 

  • Rincones ER, Moreno DA (2011) Technical and economical aspects for the commercial establishment of seaweed mariculture in Colombia: experiences in the Guajira Peninsula. Amb Desarr 15:123–144

    Google Scholar 

  • Ritz T, Damjanović A, Schulten K, Zhang J (2000) Efficient light harvesting through carotenoids. Photosynth Res 66:125–144

    Article  CAS  PubMed  Google Scholar 

  • Rosso VDE, Mercadante AZ (2007) Identification and quantification of carotenoids by HPLC-PDA-MS/MS from Amazonian fruits. J Agric Food Sci 55:5062–5072

    Article  Google Scholar 

  • Santos WS, Schmidt ÉC, Felix MR, Polo LK, Kreusch M, Pereira DT, Costa GB, Simioni C, Chow F, Ramlov F, Maraschini M, Bouzon Z (2014) Bioabsorption of cadmium, copper and lead by the red macroalga Gelidium floridanum: physiological responses and ultrastructure features. Ecotox Envir Safe 105:80–89

    Article  Google Scholar 

  • Scholes GD, Fleming GR, Olaya-castro A, Grondelle R, Van Grondelle RV (2011) Lessons from nature about solar light harvesting. Nat Chem 3:763–774

    Article  CAS  PubMed  Google Scholar 

  • Schubert N, García-Mendoza E (2008) Photoinhibition in red algal species with different carotenoid profiles. J Phycol 44:1437–1446

    Article  CAS  Google Scholar 

  • Schubert H, Sagert S, Forster RM (2001) Evaluation of the different levels of variability in the underwater light field of a shallow estuary. Helgol Mar Res 55:12–22

    Article  Google Scholar 

  • Schubert N, García-Mendoza E, Pacheco-Ruiz I (2006) Carotenoid composition of marine red algae. J Phycol 42:1208–1216

    Article  CAS  Google Scholar 

  • Taiz L, Zeiger E (2009) Fisiologia Vegetal, 4th edn. Artmed Editora, Porto Alegre

    Google Scholar 

  • Torres PB, Chow F, Furlan CM, Mandelli F, Mercadante A, Santos DYAC (2014) Standardization of a protocol to extract and analyze chlorophyll a and carotenoids in Gracilaria tenuistipitata var. liui Zang and Xia (Rhodophyta). Braz J Oceanogr 62:57–63

    Article  Google Scholar 

  • Ursi S, Plastino M (2001) Crescimento in vitro de linhagens de coloração vermelha e verde clara de Gracilaria birdiae (Gracilariales, Rhodophyta) em dois meios de cultura: análise de diferentes estádios reprodutivos. Rev Bras Bot 4:587–594

    Google Scholar 

  • Waaland JR, Waaland SD, Bates G (1974) Chloroplast structure and pigment composition in the red alga Griffithsia pacifica: regulation by light intensity. J Phycol 10:193–199

    Google Scholar 

  • Yakovleva IM, Titlyanov EA (2001) Effect of high visible and UV irradiance on subtidal Chondrus crispus: stress photoinhibition and protective mechanisms. Aquat Bot 71:47–61

    Article  CAS  Google Scholar 

  • Yong YS, Yong WTL, Anton A (2013) Analysis of formulae for determination of seaweed growth rate. J Appl Phycol 25:1831–1834

    Article  Google Scholar 

  • Young AJ (1993) Occurrence and distribution of carotenoids in photosynthetic systems. In: Young AJ, Britton G (eds) Carotenoids in photosynthesis. Chapman & Hall, London, pp 16–71

    Chapter  Google Scholar 

  • Zou D, Kunshan G (2014) Temperature of photosynthetic light- and carbon-use characteristics in the red seaweed Gracilariopsis lemaneiformis (Gracilariales, Rhodophyta). J Phycol 50:366–375

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo) for financial support (2010/02948-3), CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) for PBT fellowship, Dr Adriana Mercadante and Fernanda Mandelli from Department of Food Science, Faculty of Food Engineering, University of Campinas (UNICAMP) for HPLC-MS/MS support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Déborah Y. A. C. Santos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torres, P.B., Chow, F. & Santos, D.Y.A.C. Growth and photosynthetic pigments of Gracilariopsis tenuifrons (Rhodophyta, Gracilariaceae) under high light in vitro culture. J Appl Phycol 27, 1243–1251 (2015). https://doi.org/10.1007/s10811-014-0418-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-014-0418-z

Keywords

Navigation