Skip to main content
Log in

Physiological evidence indicates microcystin-LR to be a part of quantitative chemical defense system

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

The functional role of microcystins (MC) is poorly understood. Here, we investigated the effect of pure MC-LR recovered from the freshwater planktonic cyanobacterium Nostoc sp. BHU001 on five closely related cyanobacteria (Nostoc muscorum, Nostoc commune, Anabaena fertilissima, Anabaena doliolum, and Cylinderospermum majus) isolated from different habitats as well as on the producer itself (Nostoc sp. BHU001). MC-LR was found to be a general growth inhibitor active at nanomolar range (25–100 μg L−1). It inhibited the growth of all cyanobacterial strains in a concentration-dependent manner, except the producer. A. fertilissima was the most sensitive species. MC-LR affected vital metabolic processes such as photosynthesis, respiration, and nitrogen fixation. Nitrogenase activity showed maximum sensitivity, followed by respiration, photosynthesis, and general growth. The photosynthetic electron transport activity was maximally inhibited at PSI, followed by whole chain and PSII activities. Thus, MC-LR is active at multiple sites causing energy constraint to the vital metabolic processes of the target organisms. However, its requirement at high concentration, which is environmentally irrelevant, and lack of quantitative information on the extracellular release of MC-LR suggest that MC-LR has no allelopathic function and could be a part of a quantitative chemical defense system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allen MB, Arnon DI (1955) Studies on nitrogen-fixing blue-green algae. I. Growth and nitrogen fixation by Anabaena cylindrica Lemm. Pl Physiol 30:366–372

    Article  CAS  Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Pl Physiol 24:1–15

    Article  CAS  Google Scholar 

  • Babica P, Bláha L, Maršálek B (2006) Exploring the natural role of microcystins—a review of effects on photoautotrophic organisms. J Phycol 42:9–20

    Article  Google Scholar 

  • Bajpai R, Sharma NK, Lawton LA, Edwards C, Rai AK (2009a) Microcystins producing cyanobacterium Nostoc sp. BHU001 from a pond in India. Toxicon 53:587–590

    Article  CAS  PubMed  Google Scholar 

  • Bajpai R, Sharma NK, Rai AK, Usha (2009b) Hepatosplenomegly and phytotoxicity of a planktonic cyanobacterium Nostoc sp. BHU001 isolated from agricultural pond. World J Microbiol Biotechnol 25:1995–2003

    Article  Google Scholar 

  • Bar-Yosef Y, Sukenik A, Hadas O, Viner-Mozzini Y, Kaplan A (2010) Enslavement in the water body by toxic Aphanizomenon ovalisporum inducing alkaline phosphatase in phytoplanktons. Curr Biol 20:1557–1561

    Article  CAS  PubMed  Google Scholar 

  • Beattie KA, Kaya K, Sano T, Codd GA (1998) Three dehydrobutyrine containing microcystins from Nostoc. Phytochemistry 47:1289–1292

    Article  CAS  Google Scholar 

  • Berry JP, Gantar M, Perez MH, Berry G, Noriega FG (2008) Cyanobacterial toxins as allelochemicals with potential applications as algaecides, herbicides and insecticides. Mar Drugs 6:117–146

    Article  CAS  PubMed  Google Scholar 

  • Carmichael WW (1997) The cyanotoxins. In: Callow GA (ed) Advances in botanical research. Academic, London, pp 211–256

    Google Scholar 

  • Codd GA, Metcalf JS, Beattie KA (1999) Retention of Microcystis aeruginosa and microcystin by salad (Lactuca sativa) after spray irrigation with water containing cyanobacteria. Toxicon 37:1181–1185

    Article  CAS  PubMed  Google Scholar 

  • Conley DJ, Paerl HW, Howarth RW, Boesch DF, Seitzinger SP, Havens KE, Lancelot C, Likens GE (2009) Controlling eutrophication: nitrogen and phosphorus. Science 323:1014–1015

    Article  CAS  PubMed  Google Scholar 

  • De Figueiredo DR, Azeiteiro UM, Esteves SM, Goncalves FJM, Pereira MJ (2004) Microcystin-producing blooms—a serious global public health issues. Ecotoxicol Environ Saf 59:151–163

    Article  PubMed  Google Scholar 

  • Dembitsky VM, Řezanka T (2005) Metabolites produced by nitrogen-fixing Nostoc species. Folia Microbiol 50:363–391

    Article  CAS  Google Scholar 

  • Dittmann E, Börner T (2005) Genetic contributions to the risk assessment of microcystin in the environment. Toxicol Appl Pharmacol 203:192–200

    Article  CAS  PubMed  Google Scholar 

  • Dittmann E, Erhard M, Kaebernick M, Scheler C, Neilan BA, Von Döhren H, Börner T (2001) Altered expression of two light-dependent genes in a microcystin-lacking mutant of Microcystis aeruginosa PCC 7806. Microbiology 147:3113–3119

    CAS  PubMed  Google Scholar 

  • Frank CA (2002) Microcystin-producing cyanobacteria in recreational waters in South-Western Germany. Environ Toxicol 17:361–366

    Article  CAS  PubMed  Google Scholar 

  • Ghadouani A, Pinel-Alloul B, Plath K, Codd GA, Lampert W (2004) Effects of Microcystis aeruginosa and purified microcystin-LR on the feeding behavior of Daphnia pulicaria. Limnol Oceanogr 49:666–679

    Article  Google Scholar 

  • Grant NG (1978) Respiratory processes in mitochondria. In: Hellebust JA, Craigie JS (eds) Handbook of phycological method: physiological and biochemical methods. Cambridge University Press, Cambridge, pp 329–335

    Google Scholar 

  • Gromov BV, Vepritskii AA, Titova NN, Mamkayeva KA, Alexandrova OV (1991) Production of the antibiotic cyanobacterin LU-1 by Nostoc linckia CALU 892 (cyanobacterium). J Appl Phycol 3:55–59

    Article  CAS  Google Scholar 

  • Harada K-I, Kondo F, Lawton L (1999) Laboratory analysis of cyanotoxins. In: Chorus I, Bartram J (eds) Toxic cyanobacteria in water. A guide to their public health consequences, monitoring, and management. World Health Organization and E and FN Spon, London, pp 369–405

    Google Scholar 

  • Hirata K, Yoshitomim S, Dwi S, Iwabe O, Mahakhant A, Polchai J, Miyamoto K (2003) Bioactivities of nostocine A produced by a freshwater cyanobacterium Nostoc spongiaeforme TISTR 8169. J Biosci Bioeng 95:512–517

    CAS  PubMed  Google Scholar 

  • Hu ZQ, Liu YD, Li DH, Dauta A (2004) Physiological and biochemical microcystins-RR toxicity to the Synechococcus elongatus. Environ Toxicol 19:571–577

    Article  CAS  PubMed  Google Scholar 

  • Hu ZQ, Liu YD, Li DH, Dauta A (2005) Growth and antioxidant system of the cyanobacterium Synechococcus elongatus in response to microcystin-RR. Hydrobiologia 534:23–29

    Article  CAS  Google Scholar 

  • Kaebernick M, Neilan BA (2001) Ecological and molecular investigations of cyanotoxin production. FEMS Microbiol Ecol 35:1–9

    Article  CAS  PubMed  Google Scholar 

  • Kaebernick M, Neilan BA, Börner T, Dittmann E (2000) Light and the transcriptional response of the microcystin biosynthesis gene cluster. Appl Environ Microbiol 66:3387–3392

    Article  CAS  PubMed  Google Scholar 

  • Kearns KD, Hunter MD (2001) Toxin-producing Anabaena flos-aquae induces settling of Chlamydomonas reinhardtii, a competing motile alga. Microb Ecol 42:80–86

    CAS  PubMed  Google Scholar 

  • Keating KI (1977) Allelopathic influence on blue-green bloom sequence in a eutrophic lake. Science 196:885–886

    Article  CAS  PubMed  Google Scholar 

  • Kemp A, John J (2006) Microcystins associated with Microcystis dominated blooms in the southwest wetland, Western Australia. Environ Toxicol 21:125–130

    Article  CAS  PubMed  Google Scholar 

  • Komárek J, Anagnostidis K (1989) Modern approach to the classification system of cyanophytes 4—Nostocales. Algological Studies/Archiv für Hydrobiologie 56/Suppl Vol:247–345

    Google Scholar 

  • Krishnamurthy T, Carmichael WW, Sarver EW (1986) Toxic peptides from freshwater cyanobacteria (blue-green algae): isolation, purification and characterization of peptides from Microcystis aeruginosa and Anabaena flos-aquae. Toxicon 24:865–873

    Article  CAS  PubMed  Google Scholar 

  • Lawton LA, Edwards C, Codd GA (1994) Extraction and high-performance liquid chromatographic method for the determination of microcystins in raw and treated waters. Analyst 119:1525–1530

    Article  CAS  PubMed  Google Scholar 

  • Leão PN, Pereira AR, Liu W-T, Ng J, Pevzner PA, Dorrestein PC, Konig GM, Vasconcelos VM, Gerwick WH (2010) Synergistic allelochemicals from a freshwater cyanobacterium. Proc Nat Acad Sci USA 107:11183–11188

    Article  PubMed  Google Scholar 

  • Leblanc S, Pick FR, Aranda-Rodriguez R (2005) Alleopathic effects of the toxic cyanobacterium Microcystis aeruginosa on duckweed, Lemma gibba L. Environ Toxicol 20:67–73

    Article  CAS  PubMed  Google Scholar 

  • Leflaive J, Ten-Hage L (2007) Algal and cyanobacterial secondary metabolites in freshwater: a comparison of allelopathic compounds and toxins. Freshwat Biol 52:199–214

    Article  CAS  Google Scholar 

  • Lein S (1978) Hill reaction and phosphorhylation with chloroplast preparation from Chlamydomonas reinhardtii. In: Hellebust JA, Craigie JS (eds) Handbook of phycological methods: physiological and biochemical methods. Cambridge University Press, Cambridge, pp 305–315

    Google Scholar 

  • Lewis WMJ (1986) Evolutionary interpretation of allelochemical interactions in phytoplankton algae. Am Nat 127:184–194

    Article  Google Scholar 

  • Mason CP, Edwards KR, Carlson RE, Pignatello J, Gleason FK, Wood JM (1982) Isolation of chlorine-containing antibiotic from the freshwater cyanobacterium Scytonema hofmanni. Science 215:400–402

    Article  CAS  PubMed  Google Scholar 

  • Mikhailov A, Härmälä-Braskén A, Hellman J, Meriluoto J, Eriksson JE (2003) Identification of ATP-synthase as a novel intracellular target for microcystin-LR. Chem Biol Interact 142:223–237

    Article  CAS  PubMed  Google Scholar 

  • Neilan BA, Pearson LA, Muenchhoff J, Moffitt MC, Dittmann E (2012) Environmental conditions that influence toxin biosynthesis in cyanobacteria. Environ Microbiol. doi:10.1111/j.1462-2920.2012.02729.x

  • Oksanen I, Jokela J, Fewer DP, Wahlsten M, Rikkinen J, Sivenen K (2004) Discovery of rare and highly toxic microcystins from lichen-associated cyanobacterium Nostoc sp. strain IO-102-I. Appl Environ Microbiol 70:5756–5763

    Article  CAS  PubMed  Google Scholar 

  • Oudra B, El Andaloussi DM, Vasconcelos VM (2009) Identification and quantification of microcystins from a Nostoc muscorum bloom occurring in Oukaïmeden River (High-Atlas Mountains of Marrakech, Morocco). Environ Monit Assess 149:437–444

    Article  CAS  PubMed  Google Scholar 

  • Paerl HW, Huisman J (2009) Climate change: a catalyst for global expansion of harmful cyanobacterial blooms. Environ Microbiol Rep 1:27–37

    Article  CAS  PubMed  Google Scholar 

  • Pearson LA, Hisbergues M, Börner T, Dittmann E, Neilan BA (2004) Inactivation of an ABC transporter gene, mcyH, resulted in loss of microcystin production in the cyanobacterium Microcystis aeruginosa PCC 7806. Appl Environ Microbiol 70:6370–6378

    Article  CAS  PubMed  Google Scholar 

  • Pflugmacher S (2002) Possible allelopathic effects of cyanotoxins, with reference to microcystin-LR in aquatic ecosystems. Environ Toxicol 17:407–413

    Article  CAS  PubMed  Google Scholar 

  • Pflugmacher S, Wiegand C, Beattie KA, Codd JA, Steinberg CEW (1998) Uptake of the cyanobacterial hepatotoxin microcystin-LR by aquatic macrophytes. J Appl Bot 72:228–232

    CAS  Google Scholar 

  • Phelan RR, Downing TG (2007) Optimization of laboratory scale production and purification of microcystin-LR from pure cultures of Microcystis aeruginosa. Afr J Biotechnol 6:2451–2457

    CAS  Google Scholar 

  • Phelan RR, Downing TG (2011) A growth advantage for microcystin production by Microcystis PCC7806 under high light. J Phycol 47:1241–1246

    Article  CAS  Google Scholar 

  • Reigosa MJ, Sanchez-Moreiras A, Gonzales L (1999) Ecophysiological approach in allelopathy. Crit Rev Pl Sci 18:577–608

    Article  CAS  Google Scholar 

  • Rhoades DF, Cates RG (1976) Toward a general theory of plant antiherbivore chemistry. In: Wallace J, Mansell RL (eds) Biochemical interactions between plants and insects. Recent advances in phytochemistry vol 10. Plenum, New York, pp 168–213

  • Rohrlack T, Hyenstrand P (2007) Fate of intracellular microcystins in the cyanobacterium Microcystis aeruginosa (Chroococcales, Cyanophyceae). Phycologia 46:277–283

    Article  Google Scholar 

  • Rohrlack T, Dittmann E, Börner T, Christoffersen K (2001) Effects of cell-bound microcystins on survival and feeding of Daphnia spp. Appl Environ Microbiol 67:3523–3529

    Article  CAS  PubMed  Google Scholar 

  • Schatz D, Keren Y, Vardi A, Sukenik A, Carmeli S, Börner T, Dittmann E, Kaplan A (2007) Towards clarification of the biological role of microcystins, a family of cyanobacterial toxins. Environ Microbiol 9:965–970

    Article  CAS  PubMed  Google Scholar 

  • Sedmak B, Elersek T (2005) Microcystins induce morphological and physiological changes in selected representative phytoplanktons. Microb Ecol 50:298–305

    Article  CAS  PubMed  Google Scholar 

  • Sedmak B, Kosi G (1998) The role of microcystins in heavy cyanobacterial bloom formation. J Plankton Res 20:691–708

    Article  CAS  Google Scholar 

  • Shi L, Carmichael WW (1997) Pp1-cyano2, a protein serine/threonine phosphatase 1 gene from the cyanobacterium Microcystis aeruginosa UTEX 2063. Arch Microbiol 168:528–531

    Article  CAS  PubMed  Google Scholar 

  • Shi L, Carmichael WW, Kennelly PJ (1999) Cyanobacterial PPP family protein phosphatases possess multifunctional capabilities and are resistant to microcystin-LR. J Biol Chem 274:10039–10046

    Article  CAS  PubMed  Google Scholar 

  • Sigee DC, Glenn R, Andrews MJ, Bellinger EG, Butler RD, Epton HAS, Hendy RD (1999) Biological control of cyanobacteria: principles and possibilities. Hydrobiologia 395/396:161–172

    Article  Google Scholar 

  • Sivonen K, Jones G (1999) Cyanobacterial toxins. In: Chorus I, Bartram J (eds) Toxic cyanobacteria in water. A guide to their public health consequences, monitoring, and management. World Health Organization and E and FN Spon, London, pp 41–111

    Google Scholar 

  • Smith GD, Doan NT (1999) Cyanobacterial metabolites with bioactivity against photosynthesis in cyanobacteria, algae and higher plants. J Appl Phycol 11:337–344

    Article  CAS  Google Scholar 

  • Stanic D, Oehrle S, Gantar M, Richardson LL (2010) Microcystin production and ecological physiology of Caribbean black band disease cyanobacteria. Environ Microbiol 13:900–910

    Article  PubMed  Google Scholar 

  • Stewart WDP, Fitzgerald GP, Burris RH (1968) Acetylene reduction by nitrogen-fixing blue-green algae. Arch Microbiol 62:336–348

    CAS  Google Scholar 

  • Suikkanen S, Fistarol GO, Granéli E (2004) Allelopathic effects of the Baltic cyanobacteria Nodularia spumigena, Aphanizomenon flos-aquae and Anabaena lemmermannii on algal monocultures. J Exp Mar Biol Ecol 308:85–101

    Article  Google Scholar 

  • Sukenik A, Eshkol R, Livne A, Hadas O (2002) Inhibition of growth and photosynthesis of the dinoflagellate Peridinium gatunense by Microcystis sp. (cyanobacteria): a novel allelopathic mechanism. Limnol Oceanogr 47:1656–1663

    Article  Google Scholar 

  • Todorova AK, Jüttner F (1995) Nostocyclamide—a new macrocyclic, thiazole-containing allelochemical from Nostoc sp. 31 (cyanobacteria). J Org Chem 60:7891–7895

    Article  CAS  Google Scholar 

  • Utkilen H, Gjolme N (1995) Iron-stimulated toxin production in Microcystis aeruginosa. Appl Environ Microbiol 61:797–800

    CAS  PubMed  Google Scholar 

  • Valdor R, Aboal M (2007) Effect of living cyanobacteria, cyanobacterial crude extracts and pure microcystins on growth and ultrastructure of microalgae and bacteria. Toxicon 49:769–779

    Article  CAS  PubMed  Google Scholar 

  • Vardi A, Schatz D, Beeri K, Motro U, Sukenik A, Livne A, Kaplan A (2002) Dinoflagellate-cyanobacterium communication may determine the composition of phytoplankton assemblage in a mesotrophic lake. Curr Biol 12:1767–1772

    Article  CAS  PubMed  Google Scholar 

  • Vepritskii AA, Gromov BV, Titova NN, Mamkayeva KA (1991) Production of the antibiotic-algaecide cyanobacterin LU-2 by a filamentous cyanobacterium Nostoc sp. Mikrobiologiia 60:21–25

    CAS  PubMed  Google Scholar 

  • White SH, Fabbro LD, Duivenvoorden LJ (2003) Changes in cyanoprokaryote populations, Microcystis morphology, and microcystin concentrations in Lake Elphinstone (Central Queensland, Australia). Environ Toxicol 18:403–412

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by CSIR, New Delhi [(SRF: 9/13(45)/2004-EMR-I) to RB] and DST, New Delhi [(SP/SO/A-11/99) to AKR].

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashwani K. Rai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bajpai, R., Sharma, N.K. & Rai, A.K. Physiological evidence indicates microcystin-LR to be a part of quantitative chemical defense system. J Appl Phycol 25, 1575–1585 (2013). https://doi.org/10.1007/s10811-013-9981-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-013-9981-y

Keywords

Navigation