Skip to main content
Log in

Fatty acid contents and profiles of 16 macroalgae collected from the Irish Coast at two seasons

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Due to the established health benefits of omega-3 long-chain polyunsaturated fatty acids (LC-PUFA), there is a globally increasing demand for alternative natural resources with appropriate fatty acid profiles. To assess the suitability of macroalgae as a source, 16 species (nine Phaeophyceae, five Rhodophyta and two Chlorophyta) were collected at two seasons (June and November) from the Irish west Coast, and total fatty acid contents and specific profiles were determined. Total fatty acid contents, expressed per percentage of dry weight, ranged from 6.4 % ± 0.3 (Pelvetia canaliculata, Phaeophyceae) to 0.8 % ± 0.2 (Porphyra dioica, Rhodophyta). Most common fatty acids were palmitic (16:0), oleic (OLE, 18:1 n-9), α-linolenic (ALA, 18:3 n-3), arachidonic (ARA, 20:4 n-6) and eicosapentaenoic (EPA, 20:5 n-3) acids. Fatty acid profiles were highly variable between and within algal groups; red and brown seaweeds were generally richer in LC-PUFA (e.g. 20:4 n-6 and 20:5 n-3), while high levels of saturated fatty acids such as palmitic acid (16:0) were observed in green species. Most omega-3 PUFA-rich species investigated had a omega-6/omega-3 fatty acid ratio close to 1, which is favourable for human health. The two seasonal sampling times revealed significant differences in total fatty acid and 20:5 n-3 (EPA) contents, with changes depending on species, thus implying varying suitability as potential target species for EPA production. At both times of the year, Palmaria palmata was identified as most promising species as a source of 20:5 n-3 (EPA) amongst all species investigated, with levels ranging from 0.44 to 0.58 % of dry weight in June and November, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bartsch I, Wiencke C, Bischof K, Buchholz CM, Buck BH, Eggert A, Feuerpfeil P, Hanelt D, Jacobsen S, Karez R, Karsten U, Molis M, Roleda MY, Schubert H, Schumann R, Valentin K, Weinberger F, Wiese J (2008) The genus Laminaria sensu lato: recent insights and developments. Eur J Phycol 43:1–86

    Article  Google Scholar 

  • Blazina M, Ivesa L, Najdek M (2009) Caulerpa racemosa: adaptive varieties studied by fatty acid composition (Northern Adriatic Sea, Vrsar, Croatia). Eur J Phycol 44:183–189

    Article  CAS  Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    Article  PubMed  CAS  Google Scholar 

  • Blouin N, Calder BL, Perkins B, Brawley SH (2006) Sensory and fatty acid analyses of two Atlantic species of Porphyra (Rhodophyta). J Appl Phycol 18:79–85

    Article  CAS  Google Scholar 

  • Bocanegra A, Bastida S, Benedi J, Rodenas S, Sanchez-Muniz FJ (2009) Characteristics and nutritional and cardiovascular-health properties of seaweeds. J Med Food 12:236–258

    Article  PubMed  CAS  Google Scholar 

  • Chapman VJ, Chapman DJ (1980) Seaweeds and their uses, 3rd edn. Chapman & Hall, New York

    Book  Google Scholar 

  • Colombo ML, Rise P, Giavarini F, De Angelis L, Galli C, Bolis CL (2006) Marine macroalgae as sources of polyunsaturated fatty acids. Plant Foods Hum Nutr 61:67–72

    Article  PubMed  CAS  Google Scholar 

  • Connan S, Goulard F, Stiger V, Deslandes E, Gall EA (2004) Interspecific and temporal variation in phlorotannin levels in an assemblage of brown algae. Bot Mar 47:410–416

    Article  CAS  Google Scholar 

  • Dawczynski C, Schubert R, Jahreis G (2007) Amino acids, fatty acids, and dietary fibre in edible seaweed products. Food Chem 103:891–899

    Article  CAS  Google Scholar 

  • Denis C, Morancais M, Li M, Deniaud E, Gaudin P, Wielgosz-Collin G, Barnathan G, Jaouen P, Fleurence J (2010) Study of the chemical composition of edible red macroalgae Grateloupia turuturu from Brittany (France). Food Chem 119:913–917

    Article  CAS  Google Scholar 

  • Dillard CJ, German JB (2000) Phytochemicals: nutraceuticals and human health. J Sci Food Agric 80:1744–1756

    Article  CAS  Google Scholar 

  • Dillehay TD, Ramirez C, Pino M, Collins MB, Rossen J, Pino-Navarro JD (2008) Monte Verde: seaweed, food, medicine, and the peopling of South America. Science 320:784–786

    Article  PubMed  CAS  Google Scholar 

  • Dyerbreg J, Jorgensen KA (1982) Marine oils and thrombogenesis. Prog Lipid Res 21:255–270

    Article  Google Scholar 

  • Eaton SB, Eaton SB 3rd, Sinclair AJ, Cordain L, Mann NJ (1998) Dietary intake of long-chain polyunsaturated fatty acids during the paleolithic. World Rev Nutr Diet 83:12–23

    Article  PubMed  CAS  Google Scholar 

  • Fleurence J, Gutbier G, Mabeau S, Leray C (1994) Fatty-acids from 11 marine macroalgae of the French Brittany coast. J Appl Phycol 6:527–532

    Article  CAS  Google Scholar 

  • Fleury BG, Figueiredo L, Marconi MI, Teixeira VL, Ferreira ABB, Pinto AC (2011) Fatty acids as chemotaxonomic markers of marine macrophytes from Rio de Janeiro State, Brazil. Nat Prod Commun 6:667–672

    PubMed  CAS  Google Scholar 

  • Floreto EAT, Hirata H, Ando S, Yamasaki S (1993) Effects of temperature, light intensity, salinity and source of nitrogen on the growth, total lipid and fatty acid composition of Ulva pertusa Kjellman (Chlorophyta). Bot Mar 36:149–158

    CAS  Google Scholar 

  • Floreto EAT, Teshima S (1998) The fatty acid composition of seaweeds exposed to different levels of light intensity and salinity. Bot Mar 41:467–481

    Article  CAS  Google Scholar 

  • Froissard M, D'Andréa S, Boulard C, Chardot T (2009) Heterologous expression of AtClo1, a plant oil body protein, induces lipid accumulation in yeast. FEMS Yeast Res 9:428–438

    Article  PubMed  CAS  Google Scholar 

  • Galloway AWE, Britton-Simmons KH, Duggins DO, Gabrielson PW, Brett MT (2012) Fatty acid signatures differentiate marine macrophytes at ordinal and family ranks. J Phycol 48:956–965

    Article  Google Scholar 

  • Goecke F, Hernandez V, Bittner M, Gonzalez M, Becerra J, Silva M (2010) Fatty acid composition of three species of Codium (Bryopsidales, Chlorophyta) in Chile. Rev Biol Mar Oceanogr 45:325–330

    Article  Google Scholar 

  • Gombos Z, Wada H, Murata N (1994) The recovery of photosynthesis from low-temperature photoinhibition is accelerated by the unsaturation of membrane-lipids—a mechanism of chilling tolerance. PNAS 91:8787–8791

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Graeve M, Kattner G, Wiencke C, Karsten U (2002) Fatty acid composition of Arctic and Antarctic macroalgae: indicator of phylogenetic and trophic relationships. Mar Ecol Prog Ser 231:67–74

    Article  CAS  Google Scholar 

  • Gupta S, Abu-Ghannam N (2011) Bioactive potential and possible health effects of edible brown seaweeds. Trends Food Sci Technol 22:315–326

    Article  CAS  Google Scholar 

  • Hanson CE, Hyndes GA, Wang SF (2010) Differentiation of benthic marine primary producers using stable isotopes and fatty acids: implications to food web studies. Aquat Bot 93:114–122

    Article  CAS  Google Scholar 

  • Hazel JR, Williams EE (1990) The role of alterations in membrane lipid composition in enabling physiological adaptation of organisms to their physiological environment. Prog Lipid Res 29:167–227

    Article  PubMed  CAS  Google Scholar 

  • Horrocks LA, Yeo YK (1999) Health benefits of docosahexaenoic acid (DHA). Pharmacol Res 40:211–225

    Article  PubMed  CAS  Google Scholar 

  • Hu FB, Willett WC (2002) Optimal diets for prevention of coronary heart disease. J Am Med Assoc 288:2569–2578

    Article  CAS  Google Scholar 

  • Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54:621–639

    Article  PubMed  CAS  Google Scholar 

  • Ivea L, Blaina M, Najdek M (2004) Seasonal variations in fatty acid composition of Caulerpa taxifolia (M. Vahl.) C. Ag. in the northern Adriatic Sea (Malinska, Croatia). Bot Mar 47:209–214

    Google Scholar 

  • Kadam SU, Prabhasankar P (2010) Marine foods as functional ingredients in bakery and pasta products. Food Res Int 43:1975–1980

    Article  Google Scholar 

  • Kendel M, Couzinet-Mossion A, Viau M, Fleurence J, Barnathan G, Wielgosz-Collin G (2013) Seasonal composition of lipids, fatty acids, and sterols in the edible red alga Grateloupia turuturu. J Appl Phycol 25:425–432

    Article  CAS  Google Scholar 

  • Khotimchenko SV, Gusarova IS (2004) Red algae of Peter the Great Bay as a source of arachidonic and eicosapentaenoic acids. Biol Morya-Vlad 30:215–218

    Google Scholar 

  • Khotimchenko SV, Vaskovsky VE, Titlyanova TV (2002) Fatty acids of marine algae from the Pacific coast of north California. Bot Mar 45:17–22

    Article  CAS  Google Scholar 

  • Kim MK, Dubacq JP, Thomas JC, Giraud G (1996) Seasonal variations of triacylglycerols and fatty acids in Fucus serratus. Phytochemistry 43:49–55

    Article  CAS  Google Scholar 

  • Kris-Etherton PM, Harris WS, Appel LJ, Nutrition C (2002) Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease. Circulation 106:2747–2757

    Article  PubMed  Google Scholar 

  • Kumari P, Bijo AJ, Mantri VA, Reddy CRK, Jha B (2013) Fatty acid profiling of tropical marine macroalgae: an analysis from chemotaxonomic and nutritional perspectives. Phytochemistry 86:44–56

    Article  PubMed  CAS  Google Scholar 

  • Kumari P, Kumar M, Gupta V, Reddy CRK, Jha B (2010) Tropical marine macroalgae as potential sources of nutritionally important PUFAs. Food Chem 120:749–757

    Article  CAS  Google Scholar 

  • Lagarde M, Croset M, Sicard B, Dechavanne M (1986) Biological-activities and metabolism of eicosenoic acids in relation to platelet and endothelial function. Prog Lipid Res 25:269–271

    Article  CAS  Google Scholar 

  • McDermid KJ, Stuercke B (2003) Nutritional composition of edible Hawaiian seaweeds. J Appl Phycol 15:513–524

    Article  CAS  Google Scholar 

  • Miquel M, Browse J (1992) Arabidopsis mutants deficient in polyunsaturated fatty acid synthesis. Biochemical and genetic characterization of a plant oleoyl-phosphatidylcholine desaturase J Biol Chem 267:1502–1509

    CAS  Google Scholar 

  • Moon BY, Higashi SI, Gombos Z, Murata N (1995) Unsaturation of the membrane-lipids of chloroplasts stabilises the photosynthetic machinery against low-temperature photoinhibition in transgenic tobacco plants. PNAS 92:6219–6223

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Mouritsen OG, Dawczynski C, Duelund L, Jahreis G, Vetter W, Schröder M (2013) On the human consumption of the red seaweed dulse (Palmaria palmata (L.) Weber & Mohr). J Appl Phycol. doi:10.1007/s10811-013-0014-7

    Google Scholar 

  • Nelson MM, Phleger CF, Nichols PD (2002) Seasonal lipid composition in macroalgae of the northeastern Pacific Ocean. Bot Mar 45:58–65

    Article  CAS  Google Scholar 

  • Pal D, Khozin-Goldberg I, Didi-Cohen S, Solovchenko A, Batushansky A, Kaye Y, Sikron N, Samani T, Fait A, Boussiba S (2013) Growth, lipid production and metabolic adjustments in the euryhaline eustigmatophyte Nannochloropsis oceanica CCALA 804 in response to osmotic downshift. Appl Microbiol Biotechnol:1–16. doi:10.1007/s00253-013-5092-6

  • Pereira H, Barreira L, Figueiredo F, Custodio L, Vizetto-Duarte C, Polo C, Resek E, Engelen A, Varela J (2012) Polyunsaturated fatty acids of marine macroalgae: potential for nutritional and pharmaceutical applications. Mar Drugs 10:1920–1935

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Prabhasankar P, Ganesan P, Bhaskar N, Hirose A, Stephen N, Gowda LR, Hosokawa M, Miyashita K (2009) Edible Japanese seaweed, wakame (Undaria pinnatifida) as an ingredient in pasta: chemical, functional and structural evaluation. Food Chem 115:501–508

    Article  CAS  Google Scholar 

  • Renaud SM, Luong-Van JT (2006) Seasonal variation in the chemical composition of tropical Australian marine macroalgae. J Appl Phycol 18:381–387

    Article  CAS  Google Scholar 

  • Rousseau D, Helies-Toussaint C, Moreau D, Raederstorff D, Grynberg A (2003) Dietary n-3 PUFAs affect the blood pressure rise and cardiac impairments in a hyperinsulinemia rat model in vivo. Am J Physiol Heart Circ Physiol 285:1294–1302

    Google Scholar 

  • Rustan AC, Nenseter MS, Drevon CA (1997) Omega-3 and omega-6 fatty acids in the insulin resistance syndrome—lipid and lipoprotein metabolism and atherosclerosis. 827. Ann NY Acad Sci 827:310–326

    Article  PubMed  CAS  Google Scholar 

  • Sakai K, Okuyama H, Kon K, Maeda N, Sekiya M, Shiga T, Reitz RC (1990) Effetcs of high alpha-linolenate and linoleate diets on erythrocyte deformability and hematological indixes in rats. Lipids 25:793–797

    Article  PubMed  CAS  Google Scholar 

  • Sanders TAB (2000) Polyunsaturated fatty acids in the food chain in Europe. Am J Clin Nutr 71:176S–178S

    PubMed  CAS  Google Scholar 

  • Sanina NM, Goncharova SN, Kostetsky EY (2004) Fatty acid composition of individual polar lipid classes from marine macrophytes. Phytochemistry 65:721–730

    Article  PubMed  CAS  Google Scholar 

  • Sanina NM, Goncharova SN, Kostetsky EY (2008) Seasonal changes of fatty acid composition and thermotropic behavior of polar lipids from marine macrophytes. Phytochemistry 69:1517–1527

    Article  PubMed  CAS  Google Scholar 

  • Simopoulos AP (1991) Omega-3 fatty acids in health and disease and in growth and development. Am J Clin Nutr 54:438–463

    PubMed  CAS  Google Scholar 

  • Simopoulos AP (2002) The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed Pharmacother 56:365–379

    Article  PubMed  CAS  Google Scholar 

  • Simopoulos AP (2008) The importance of the omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Exp Biol Med 233:674–688

    Article  CAS  Google Scholar 

  • Stengel DB, Connan S, Popper ZA (2011) Algal chemodiversity and bioactivity: sources of natural variability and implications for commercial application. Biotechnol Adv 29:483–501

    Article  PubMed  CAS  Google Scholar 

  • Stengel DB, Wilkes RJ, Guiry MD (1999) Seasonal growth and recruitment of Himanthalia elongata (Fucales, Phaeophycota) in different habitats on the Irish west Coast. Eur J Phycol 34:213–221

    Google Scholar 

  • Thompson PA, Guo MX, Harrison PJ, Whyte JNC (1992) Effects of variation in temperature on the fatty acid composition of 8 species of marine phytoplankton. J Phycol 28:488–497

    Article  CAS  Google Scholar 

  • van Ginneken VJT, Helsper J, de Visser W, van Keulen H, Brandenburg WA (2011) Polyunsaturated fatty acids in various macroalgal species from north Atlantic and tropical seas. Lipids Health Dis 10. doi:10410.1186/1476-511x-10-104

  • Venkatesalu V, Sundaramoorthy P, Anantharaj M, Chandrasekaran M, Senthilkumar A (2012) Seasonal variation on fatty acid composition of some marine macro algae from Gulf of Mannar Marine Biosphere Reserve, Southeast coast of India. Indian J Geo-Mar Sci 41:442–450

    CAS  Google Scholar 

  • Ventura Y, Wuddineh WA, Myrzabayeva M, Alikulov Z, Khozin-Goldberg I, Shpigel M, Samocha TM, Sagi M (2011) Effect of seawater concentration on the productivity and nutritional value of annual Salicornia and perennial Sarcocornia halophytes as leafy vegetable crops. Sci Hortic 128:189–196

    Article  CAS  Google Scholar 

  • Ward OP, Singh A (2005) Omega-3/6 fatty acids: alternative sources of production. Process Biochem 40:3627–3652

    Article  CAS  Google Scholar 

  • Worm B, Hilborn R, Baum JK, Branch TA, Collie JS, Costello C, Fogarty MJ, Fulton EA, Hutchings JA, Jennings S, Jensen OP, Lotze HK, Mace PM, McClanahan TR, Minto C, Palumbi SR, Parma AM, Ricard D, Rosenberg AA, Watson R, Zeller D (2009) Rebuilding global fisheries. Science 325:578–585

    Article  PubMed  CAS  Google Scholar 

  • Yokoyama M, Origasa H, Matsuzaki M, Matsuzawa Y, Saito Y, Ishikawa Y, Oikawa S, Sasaki J, Hishida H, Itakura H, Kita T, Kitabatake A, Nakaya N, Sakata T, Shimada K, Shirato K, Investigators J (2007) Effects of eicosapentaenoic acid on major coronary events in hypercholesterolaemic patients (JELIS): a randomised openlabel, blinded endpoint analysis. Lancet 369:1090–1098

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NutraMara, the Irish Marine Functional Foods Research Initiative funded by the Irish Marine Institute and the Department of Agriculture, Food and the Marine (DAFM). The authors thank Udo Nitschke for helpful comments during the preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Schmid.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmid, M., Guihéneuf, F. & Stengel, D.B. Fatty acid contents and profiles of 16 macroalgae collected from the Irish Coast at two seasons. J Appl Phycol 26, 451–463 (2014). https://doi.org/10.1007/s10811-013-0132-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-013-0132-2

Keywords

Navigation