Skip to main content
Log in

Ecophysiological plasticity of annual populations of giant kelp (Macrocystis pyrifera) in a seasonally variable coastal environment in the Northern Patagonian Inner Seas of Southern Chile

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Annual populations of Macrocystis pyrifera in Southern Chile have been the main focus of studies intending to understand how these populations can couple consecutive sporophytic generations. Research has included studying the population dynamics and gametophytic responses to environmental conditions and the role of recruitment, grazing, and the use of benthic filter feeders as secondary substrate. Adult sporophytes undergo senescence due to changes in abiotic factors during summer and autumn producing 100 % mortality. This study provides evidence about the environmental factors driving the decline in sporophyte populations occurring in summer and fall by monitoring two independent kelp populations and also by running experiments using 400 L tubular photobioreactors with semicontrolled environmental factors for testing the capacity for new recruits to recover population levels under winter conditions. The study of natural populations of giant kelp indicates that high temperatures (>15–17 °C) explain the high mortality of adult plants in summer. On the other hand, the sporophytes established in late winter/early spring are able, under high nitrogen availability, to increase their chlorophyll content significantly, allowing the individuals to reduce their light saturation point and thus allow a higher productivity under the low light conditions that exist in late winter and early spring. These results, in addition to the recruitment facilitation produced by filter feeders, help to explain how giant kelp can deal with, and couple sporophytic generations, in variable environments. These results also emphasize the highly plastic physiology of giant kelp that enables this species to colonize diverse habitats across its large distributional range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Brown MT, Nyman MA, Keogh JA, Chin NKM (1997) Seasonal growth of the giant kelp Macrocystis pyrifera in New Zealand. Mar Biol 129:417–424

    Article  Google Scholar 

  • Buschmann AH (1992) Algal communities of a wave-protected intertidal rocky shore in Southern Chile. In: Seeliger U (ed) Coastal plant communities of Latin America. Academic, San Diego, pp 91–104

    Chapter  Google Scholar 

  • Buschmann AH, Vásquez JA, Osorio P, Reyes E, Filún L, Hernández-González MC, Vega A (2004) The effect of water movement, temperature and salinity on abundance and reproductive patterns of Macrocystis spp. (Phaeophyta) at different latitudes in Chile. Mar Biol 145:849–862

    Article  Google Scholar 

  • Buschmann AH, Moreno C, Vásquez JA, Hernández-González MC (2006) Reproduction strategies of Macrocystis pyrifera (Phaeophyta) in Southern Chile: the importance of population dynamics. J Appl Phycol 18:575–582

    Article  Google Scholar 

  • Cabello-Pasini A, Aguirre-von-Wobeser E, Figueroa FL (2000) Photoinhibition of photosynthesis in Macrocystis pyrifera (Phaeophyceae), Chondrus crispus (Rhodophyceae) and Ulva lactuca (Chlorophyceae) in outdoor culture systems. J Photochem Photobiol 57:169–178

    Article  CAS  Google Scholar 

  • Chapman ARO, Craigie JS (1977) Seasonal growth in Laminaria longicruris: relations with dissolved inorganic nutrients and internal reserves of nitrogen. Mar Biol 40:197–205

    Article  CAS  Google Scholar 

  • Chapman ARO, Markham JW, Lüning K (1978) Effects of nitrate concentration on the growth and physiology of Laminaria saccharina (Phaeophyta) in culture. J Phycol 14:195–198

    Article  CAS  Google Scholar 

  • Colombo-Pallotta MF, García-Mendoza E, Ladah LB (2006) Photosynthetic performance, light absorption, and pigment composition of Macrocystis pyrifera (Laminariales, Phaeophyceae) blades from different depths. J Phycol 42:1225–1234

    Article  CAS  Google Scholar 

  • Coyer JA, Smith GJ, Andersen RA (2001) Evolution of Macrocystis spp. (Phaeophyceae) as determined by ITS1 and ITS2 sequences. J Phycol 37:574–585

    Article  Google Scholar 

  • Dayton PK (1985a) Ecology of kelp communities. Ann Rev Ecol Syst 16:215–245

    Article  Google Scholar 

  • Dayton PK (1985b) The structure and regulation of some South American kelp communities. Ecol Monogr 55:447–468

    Article  Google Scholar 

  • Dayton PK, Tegner MJ, Edwards PB, Riser KL (1999) Temporal and spatial scales of kelp demography: the role of oceanographic climate. Ecol Monogr 69:219–250

    Article  Google Scholar 

  • Demes KW, Graham MH, Suskiewicz TS (2009) Phenotypic plasticity reconciles incongruous molecular and morphological taxonomies: the giant kelp, Macrocystis (Laminariales, Phaeophyceae), is a monospecific genus. J Phycol 45:1266–1269

    Article  Google Scholar 

  • Dean PR, Hurd CL (2007) Seasonal growth, erosion rates, and nitrogen and photosynthetic ecophysiology of Undaria pinnatifida (Heterokontophyta) in Southern New Zealand. J Phycol 43:1138–1148

    Article  CAS  Google Scholar 

  • Druehl LD, Wheeler WN (1986) Population biology of Macrocystis integrifolia from British Columbia, Canada. Mar Biol 90:173–179

    Article  Google Scholar 

  • Dunton KH (1990) Growth and production in Laminaria solidungula: relation to continuous underwater light levels in the Alaskan high Arctic. Mar Biol 106:297–304

    Article  Google Scholar 

  • Dunton KH, Jodwalis CM (1988) Photosynthetic performance of Laminaria solidungula measured in situ in the Alaskan high Arctic. Mar Biol 98:277–286

    Article  Google Scholar 

  • Edwards MS (2004) Estimating scale-dependency in disturbance impacts: El Niños and giant kelp forests in the northeast Pacific. Oecologia 138:436–447

    Article  PubMed  Google Scholar 

  • Edwards MS, Kim KY (2010) Diurnal variation in relative photosynthetic performance in giant kelp Macrocystis pyrifera (Phaeophyceae, Laminariales) at different depths as estimated using PAM fluorometry. Aquat Bot 92:119–128

    Article  CAS  Google Scholar 

  • Gao X, Endo H, Taniguchi K, Agatsuma Y (2013) Combined effects of seawater temperature and nutrient condition on growth and survival of juvenile sporophytes of the kelp Undaria pinnatifida (Laminariales; Phaeophyta) cultivated in northern Honshu, Japan. J Appl Phycol 25:269–275

    Article  Google Scholar 

  • Gagne JA, Mann KH, Chapman ARO (1982) Seasonal patterns of growth and storage in Laminaria longicruris in relation to differing patterns of availability of nitrogen in the water. Mar Biol 69:91–101

    Article  Google Scholar 

  • Genty B, Briantais J, Baker N (1989) The relationship between quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 990:87–92

    Article  CAS  Google Scholar 

  • Gerard VA (1997) The role of nitrogen nutrition in high-temperature tolerance of the kelp Laminaria saccharina (Chromophyta). J Phycol 33:800–810

    Article  CAS  Google Scholar 

  • Gerard VA (1982) Growth and utilization of internal nitrogen reserves by the giant kelp Macrocystis pyrifera in a low-nitrogen environment. Mar Biol 66:27–35

    Article  CAS  Google Scholar 

  • Gerard VA, Mann KH (1979) Growth and production of Laminaria longicruris (Phaeophyta) populations exposed to different intensities of water movement. J Phycol 14:195–198

    Google Scholar 

  • Gerard VA, DuBois K (1988) Temperature ecotypes near the Southern boundary of the kelp, Laminaria saccharina. Mar Biol 97:575–580

    Article  Google Scholar 

  • González-Fragoso J, Ibarra-Obando SE, North WJ (1991) Frond elongation rates of shallow water Macrocystis pyrifera (L.) Ag. in northern Baja California, México. J Appl Phycol 3:311–318

    Article  Google Scholar 

  • Graham MH (1996) Effect of high irradiance on recruitment of giant kelp Macrocystis (Phaeophyta) in shallow water. J Phycol 32:903–906

    Article  Google Scholar 

  • Graham MH (2002) Prolonged reproductive consequences of short-term biomass loss in seaweeds. Mar Biol 140:901–911

    Article  Google Scholar 

  • Graham MH, Harrold C, Lisin S, Light K, Watanabe JM, Foster MS (1997) Population dynamics of giant kelp Macrocystis pyrifera along a wave exposure gradient. Mar Ecol Prog Ser 148:269–279

    Article  Google Scholar 

  • Graham MH, Vásquez JA, Buschmann AH (2007) Global ecology of the giant kelp Macrocystis: from ecotypes to ecosystems. Oceanogr Mar Biol Ann Rev 45:39–88

    Google Scholar 

  • Gutiérrez A, Correa T, Muñoz V, Santibañez A, Marcos T, Cáceres C, Buschmann AH (2006) Farming of the giant kelp Macrocystis pyrifera in Southern Chile for development of novel food products. J Appl Phycol 18:259–267

    Article  Google Scholar 

  • Henley W (1993) Measurement and interpretation of photosynthetic light-response curves in algae in the context of photoinhibition and diel changes. J Phycol 29:729–739

    Article  Google Scholar 

  • Henríquez LA, Buschmann AH, Maldonado MA, Graham MH, Hernández-González MC, Pereda SV, Bobadilla MI (2011) Grazing on giant kelp microscopic phases and the recruitment success of annual populations of Macrocystis pyrifera (Laminariales, Phaeophyta) in Southern Chile. J Phycol 47:252–258

    Article  Google Scholar 

  • Hernández-Carmona G (1996) Frond elongation rates of Macrocystis pinífera (L.) Ag. at Bahia Tortugas, Baja California sur, México. Ciencias Marinas 22:57–72

    Google Scholar 

  • Hurd C, Berges J, Osborne J, Harrison P (1995) An in vitro assay for marine macroalgae: optimization and characterization of the enzyme for Fucus gardneri (Phaeophyta). J Phycol 31:835–843

    Article  CAS  Google Scholar 

  • Jackson GA (1977) Nutrients and production of the giant kelp Macrocystis pyrifera off Southern California. Limnol Oceanogr 22:979–995

    Article  CAS  Google Scholar 

  • Jackson GA (1987) Modeling the growth and harvest yield of the giant kelp Macrocystis pyrifera. Mar Biol 95:611–624

    Article  Google Scholar 

  • Jassby AD, Platt T (1976) Mathematical formulation of the relationship between photosynthesis and light for phytoplankton. Limnol Oceanogr 21:540–547

    Article  CAS  Google Scholar 

  • Lobban CS (1978) Growth of Macrocystis integrifolia in Barkley Sound, Vancouver Island, B.C. Can J Bot 56:2707–2711

    Article  Google Scholar 

  • Lobban CS, Harrison PJ (1994) Seaweed ecology and physiology. Cambridge University Press, Cambridge, 384 pp

    Book  Google Scholar 

  • Macaya EC, Zucarello GC (2010a) DNA barcoding and genetic divergence in the giant kelp Macrocystis (Laminariales). J Phycol 46:736–742

    Article  CAS  Google Scholar 

  • Macaya EC, Zucarello GC (2010b) Genetic structure of the giant kelp Macrocystis pyrifera along the southeastern Pacific. Mar Ecol Prog Ser 420:103–112

    Article  Google Scholar 

  • Mizuta H, Torii K, Yamamoto H (1997) The relationship between nitrogen and carbon contents in the sporophytes of Laminaria japonica (Phaeophyceae). Fish Sci 63:553–556

    CAS  Google Scholar 

  • North WJ (1971) The biology of giant kelp beds (Macrocystis) in California: introduction and background. Nova Hedwigia 32:1–68

    Google Scholar 

  • North WJ (1994) Review of Macrocystis biology. In: Akatsuka I (ed) Biology of economic algae. Academic, The Hague, pp 447–527

    Google Scholar 

  • North WJ, Jackson GA, Manley SL (1986) Macrocystis and its environment: knowns and unknowns. Aquat Bot 26:9–26

    Article  Google Scholar 

  • Reed DC (1987) Factors affecting sporophyll production in the giant kelp Macrocystis pyrifera. J Exp Mar Biol Ecol 113:60–69

    Article  Google Scholar 

  • Reed DC, Ebeling AW, Anderson TW, Anghera M (1996) Differential reproductive responses to fluctuating resources in two seaweeds with different reproductive strategies. Ecology 77:300–316

    Article  Google Scholar 

  • Reed DC, Kinlan BP, Raimondi PT, Washburn L, Gaylord B, Drake PT (2006) A metapopulation perspective on patch dynamics and connectivity of giant kelp. In: Kritzer JP, Sale PF (eds) Marine metapopulations. Academic, San Diego, pp 352–386

    Google Scholar 

  • Reed DC, Rassweiler A, Arkema KK (2008) Biomass rather than growth rate determines variation in net primary production by giant kelp. Ecology 89:2493–2505

    Article  PubMed  Google Scholar 

  • Russell G (1986) Variation and natural selection in marine macroalgae. Oceanogr Mar Biol Annu Rev 24:309–377

    Google Scholar 

  • Seely G, Duncan M, Vidaver W (1972) Preparative and analytical extraction of pigments from brown algae with dimethyl sulfoxide. Mar Biol 12:184–188

    Article  CAS  Google Scholar 

  • Staehr PA, Wernberg T (2009) Physiological responses of Ecklonia radiata (Laminariales) to a latitudinal gradient in ocean temperature. J Phycol 45:91–99

    Article  CAS  Google Scholar 

  • Strickland J, Parsons T (1972) A practical handbook of seawater analysis. Bull Fish Res Board Can No 167, 2nd ed., 310 pp

  • van Tüssenbroek BI (1989) Seasonal growth and composition of fronds of Macrocystis pyrifera in the Falkland Islands. Mar Biol 100:419–430

    Article  Google Scholar 

  • Vásquez JA, Alonso-Vega JM, Buschmann AH (2006) Long term variability in the structure of kelp communities in northern Chile and the 1997–98 ENSO. J Appl Phycol 18:505–519

    Article  Google Scholar 

  • Vega A, Vásquez JA, Buschmann AH (2005) Population biology of the subtidal kelps Macrocystis integrifolia and Lessonia trabeculata (Laminariales, Phaeophyceae) in an upwelling ecosystem of Northern Chile: interannual variability and EL Niño 1997–1998. Rev Chil Hist Nat 78:33–50

    Google Scholar 

  • Westermeier R, Möller P (1990) Population dynamics of Macrocystis pyrifera (L.) C. Agardh in the rocky intertidal of Southern Chile. Bot Mar 33:363–367

    Article  Google Scholar 

  • Westermeier R, Patiño D, Piel M, Maier I, Müller D (2006) A new approach to kelp mariculture in Chile: production of free-floating sporophyte seedlings from gametophyte cultures of Lessonia trabeculata and Macrocystis pyrifera. Aquacult Res 37:164–171

    Article  Google Scholar 

  • Wheeler PA, North WJ (1981) Nitrogen supply, tissue composition and frond growth rates for Macrocystis pyrifera off the coast of Southern California. Mar Biol 64:59–69

    Article  CAS  Google Scholar 

  • Wheeler WN, Druehl LD (1986) Seasonal growth and productivity of Macrocystis integrifolia in British Columbia, Canada. Mar Biol 90:181–186

    Article  Google Scholar 

  • Zimmerman RC, Kremer JN (1986) In situ growth and chemical composition of the giant kelp, Macrocystis pyrifera, response to temporal changes in ambient nutrient availability. Mar Ecol Prog Ser 27:277–285

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support of FONDECYT 11100845 grant. The authors also acknowledge the field support of Miguel Maldonado, Robinson Altamirano, and Cristian Vera between many other students. English language usage was improved by Dr Matthew Lee.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro H. Buschmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buschmann, A.H., Pereda, S.V., Varela, D.A. et al. Ecophysiological plasticity of annual populations of giant kelp (Macrocystis pyrifera) in a seasonally variable coastal environment in the Northern Patagonian Inner Seas of Southern Chile. J Appl Phycol 26, 837–847 (2014). https://doi.org/10.1007/s10811-013-0070-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-013-0070-z

Keywords

Navigation