Skip to main content
Log in

Transcriptome sequencing and comparative analysis of the gametophyte thalli of Pyropia tenera under normal and high temperature conditions

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

The marine red alga Pyropia tenera grows on intertidal rocks, where it undergoes dynamic environmental changes including temperature, desiccation, osmotic shock, and changes in light intensity. Therefore, Pyropia have developed a variety of strategies and mechanisms to overcome those environmental stressors. In an effort to identify the genes involved in the high-temperature tolerance of P. tenera, we generated 368,334 expression sequence tags (ESTs) using 454 sequencing technology and 3,331 ESTs using the Sanger method. Among the total ESTs, 222,024 reads were generated from gametophyte thalli under control condition and 149,641 reads were generated under high temperature condition. These ESTs were assembled into 17,870 contigs consisting of 336,016 reads, whereas 35,924 sequences remained as unassembled ESTs. Only 16.5 % of contigs shared significant similarity with an E value of ≤1E− 10 with UniProt sequence. The 95 different SSR motifs were discovered in 1,586 contigs. Trinucleotide repeat was absolutely predominant (90.2 %) SSR, and GGC was the most common motif. A comparison of the ESTs from gametophyte thalli under normal and heat stress conditions enabled us to identify the transcripts that were up or downregulated by high temperature. Most of transcripts produced under the high temperature condition belong to heat shock protein family and novel transcripts not matched to known genes in current public databases. These ESTs will provide valuable information to identify the DNA markers for the Pyropia species and the genes involved in the molecular mechanism of thermotolerance in red algae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Asamizu E, Nakajima M, Kitade Y, Saga N, Nakamura Y, Tabata S (2003) Comparison of RNA expression profiles between the two generations of Porphyra yezoensis (Rhodophyta), based on expressed sequence tag frequency analysis. J Phycol 39:923–30

    Article  Google Scholar 

  • Bloom JS, Khan Z, Kryglyak L, Singh M, Cauday AA (2009) Measuring differential gene expression by short read sequencing: quantitative comparison to 2-channel gene expression microarrays. BMC Genomics 10:221

    Article  PubMed  Google Scholar 

  • Blouin NA, Brodie JA, Grossman AC, Xu P, Brawley SH (2011) Porphyra: a marine crop shaped by stress. Trends Plant Sci 16:29–37

    Article  PubMed  CAS  Google Scholar 

  • Boston RS, Viitanen PV, Vierling E (1996) Molecular chaperones and protein folding in plants. Plant Mol Biol 32:191–222

    Article  PubMed  CAS  Google Scholar 

  • Bowman JL, Floyd SK, Sakakibara K (2007) Green genes-comparative genomics of the green branch life. Cell 129:229–234

    Article  PubMed  CAS  Google Scholar 

  • Brautigam M, Lindlof A, Zakhrabekova S, Gharti-Chhetri G, Olsson B, Olsson O (2005) Generation and analysis of 9,792 EST sequences from cold acclimated oat, Avena sativa. BMC Plant Biol 5:18

    Article  PubMed  Google Scholar 

  • Bray EA, Bailey-Serres J, Weretilnyk E (2000) Responses to abiotic stresses. In: Buchanan B, Gruissem W, Jones R (eds) Biochemistry and molecular biology of plants. American Society of Plant Biologists, Rockville, pp 1158–1203

    Google Scholar 

  • Busch W, Wunderlich M, Schoffl F (2005) Identification of novel heat shock factor-dependent genes and biochemical pathways in Arabidopsis thaliana. Plant J 41:1–14

    Article  PubMed  CAS  Google Scholar 

  • Chan CX, Yang EC, Banerjee T, Yoon HS, Martone PT, Estevez JM, Bhattacharya D (2011) Red and green algal monophyly and extensive gene sharing found in a rich repertoire of red algal genes. Curr Biol 21:328–333

    Article  PubMed  CAS  Google Scholar 

  • Cheung F, Hass BJ, Goldberg SMD, May GD, Xiao Y, Town CD (2006) Sequencing Medicago truncatula expressed sequenced tags using 454 Life Science technology. BMC Genomics 7:272

    Article  PubMed  Google Scholar 

  • Cheung F, Win J, Lang JM, Hamilton J, Vuong H, Leach JE, Kamoun S, Levesque A, Tisserat N, Buell CR (2008) Analysis of the Pythium ultimum transcriptome using Sanger and pyrosequencing approaches. BMC Genomics 9:542

    Article  PubMed  Google Scholar 

  • Choi DW, Jung JD, Ha YI, Park HW, In DS, Chung HJ, Liu JR (2005) Analysis of transcripts in methyl jasmonate-treated ginseng hairy roots to identify genes involved in the biosynthesis of ginsenosides and other secondary metabolites. Plant Cell Rep 23:557–566

    Article  PubMed  CAS  Google Scholar 

  • Cock JM, Coelho SM (2011) Algal models in plant biology. J Exp Bot 62:2425–2430

    Article  PubMed  CAS  Google Scholar 

  • Feder ME, Hofmann GE (1999) Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu Rev Physiol 61:243–282

    Article  PubMed  CAS  Google Scholar 

  • Guo S, Zheng Y, Joung JG, Liu S, Zhang Z, Crasta OR, Sobral BW, Xu Y, Huang S, Fei Z (2010) Transcriptome sequencing and comparative analysis of cucumber flower with different sex types. BMC Genomics 11:384

    Article  PubMed  Google Scholar 

  • Houde M, Belcaid M, Ouellet F, Danyluk J, Monroy AF, Dryanova A, Gulick P, Bergeron A, Laroche A, Links MG, MacCarthy L, Crosby WL, Sarhan F (2006) Wheat EST resources for functional genomics of abiotic stress. BMC Genomics 7:149

    Article  PubMed  Google Scholar 

  • Huan P, Wang H, Liu B (2012) Transcriptomic analysis of the clam Meretrix meretrix on different larval stages. Mar Biotechnol 14:69–78

    Article  PubMed  CAS  Google Scholar 

  • Huang J, Lu X, Yan H, Chen S, Zhang W, Huang R (2012) Transcriptome characterization and sequencing-based identification of salt-responsive genes in Millettia pinnata, a semi-mangove plant. DNA Res 19:195–207

    Article  PubMed  CAS  Google Scholar 

  • Hwang MS, Chung IK, Oh YS (1997) Temperature responses of Porphyra tenera Kjellman and P. yezoensis Ueda (Bangiales, Rhodophyta) from Korea. Algae 12:207–213

    Google Scholar 

  • Hwang MS, Kim SM, Ha DS, Baek JM, Kim HS, Choi HG (2005) DNA sequences and identification of Porphyra cultivated by natural seeding on the southwest coast of Korea. Algae 20:183–196

    Article  Google Scholar 

  • Ireland HE, Harding SJ, Bonwick GA, Jones M, Smith CJ, Williams JHH (2004) Evaluation of heat shock protein 70 as a biomarker of environmental stress in Fucus serratus and Lemna minor. Biomarkers 9:139–155

    Article  Google Scholar 

  • Karlin S, Brocchieri L (1998) Heat shock protein 70 family: multiple sequence comparisons, function, and evolution. J Mol Evol 47:565–577

    Article  PubMed  CAS  Google Scholar 

  • Kim E, Park HS, Jung YJ, Jeong WJ, Park HS, Hwang MS, Park EJ, Gong YG, Choi DW (2011) Identification of the high-temperature response genes from Porphyra seriata (Rhodophyta) ESTs and enhancement of heat tolerance of Chlamydomonas (Chlorophyta) by expression of the Porphyra HTR2 gene. J Phycol 47:821–828

    Article  CAS  Google Scholar 

  • Kitade Y, Asamizu E, Satoru F, Nakajima M, Ootsuka S, Endo H, Tabata S, Saga N (2008) Identification of genes preferentially expressed during asexual sporulation in Porphyra yezoensis gametophytes (Bangiales, Rhodophyta). J Phycol 44:113–123

    Article  CAS  Google Scholar 

  • Lister R, Gregory BD, Ecker JR (2008) Next is now: new technologies for sequencing of genomes, transcriptomes and beyond. Curr Opin Plant Biol 12:107–118

    Article  Google Scholar 

  • Lluisma A, Ragan MA (1997) Expressed sequence tags (ESTs) from the marine red alga Gracilaria gracilis. J Appl Phycol 9:287–293

    Article  CAS  Google Scholar 

  • Mayer MP, Bukau B (2005) HSP70 chaperones: cellular functions and molecular mechanism. Cell Mol Life Sci 62:670–684

    Article  PubMed  CAS  Google Scholar 

  • McLachlan J (1973) Growth media-marine. In: Stein JR (ed) Handbook of phycological methods. Cambridge Univ. Press, New York, pp 25–51

    Google Scholar 

  • Miura A (1988) Taxonomic studies of Porphyra species cultivated in Japan, referring to their transition to the cultivated variety. J Tokyo Univ Fish 75:311–325

    Google Scholar 

  • Nelson RJ, Ziegelhoffer T, Nicolet C, Werner-Washburne M, Craig EA (1992) The translation machinery and 70 kD heat shock protein cooperate in protein synthesis. Cell 71:97–105

    Article  PubMed  CAS  Google Scholar 

  • Nikaido I, Asamizu E, Nakajima M, Nakamura Y, Saga N, Tabata S (2000) Generation of 10,154 expressed sequence tags from a leafy gametophyte of a marine red alga, Porphyra yezoensis. DNA Res 7:223–227

    Article  PubMed  Google Scholar 

  • Nover L, Bharti K, Koskull-Döring P, Mishra SK, Ganguli A, Scharf KD (2001) Arabidopsis and the heat stress transcription factor world: how many heat stress transcription factors do we need? Cell Stress Chaperon 6:177–189

    Article  CAS  Google Scholar 

  • Park HS, Jeong WJ, Kim EC, Jung YJ, Lim JM, Hwang MS, Park EJ, Ha DS, Choi DW (2011) Heat shock protein gene family of the Porphyra seriata and enhancement of heat stress tolerance by PsHSP70 in Chlamydomonas. Mar Biotech 14:332–342

    Article  Google Scholar 

  • Pearson GA, Hoarau G, Lago-Leston A, Coyer JA, Kube M, Reinhardt R, Henckel K, Serrao ETA, Corre E, Olsen JL (2010) An expressed sequence tag analysis of the intertidal brown seaweeds Fucus serratus (L.) and F. vesiculsus (L.) (Heterokontophyta, Phaeophyceae) in response to abiotic stressors. Mar Biotech 12:195–213

    Article  CAS  Google Scholar 

  • Qin D, Wu H, Peng H, Yao Y, Ni Z, Li Z, Zhou C, Sun Q (2008) Heat stress-responsive trancriptome analysis in heat susceptible and tolerant wheat (Triticum aestivum L.) by using Wheat Genome Array. BMC Genomics 9:432

    Article  PubMed  Google Scholar 

  • Renner T, Waters ER (2007) Comparative genomic analysis of the HSP70s from five diverse photosynthetic eukaryotes. Cell Stress Chaperones 12:172–185

    Article  PubMed  CAS  Google Scholar 

  • Roeder V, Collén J, Rousvoal S, Corre E, Leblanc C, Boyen C (2005) Identification of stress gene transcripts in Laminaria digitata (Phaeophyceae) protoplast cultures by expressed sequence tag analysis. J Phycol 41:1227–1235

    Article  CAS  Google Scholar 

  • Sahoo D, Tang X, Yarish C (2002) Porphyra—the economic seaweed as a new experimental system. Curr Sci 83:1313–1316

    Google Scholar 

  • Schroda M, Vallon O (2009) Chaperones and proteases. In: Stern DB (ed) Chlamydomonas source book, volume 2, 2nd edn. Elsevier, San Diego, pp 671–729

    Google Scholar 

  • Tanaka KI, Namba T, Arai Y, Fujimoto M, Adachi H, Sobue G, Takeuchi K, Nakai A, Mizushima T (2007) Genetic evidence for a protective role for heat shock factor 1 and heat shock protein 70 against colitis. J Biol Chem 282:23240–23252

    Article  PubMed  CAS  Google Scholar 

  • Thiel T, Michalek Wm Varshney RK, Graner A (2003) Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theor Appl Genet 106:411–422

    PubMed  CAS  Google Scholar 

  • Wang W, Vinocur B, Shoseyov O, Altman A (2004) Role of plant heat-shock proteins and molecular chaperons in the abiotic stress response. Trends Plant Sci 9:244–252

    Article  PubMed  CAS  Google Scholar 

  • Xiaolei F, Yongjun F, Songnian H, Guangce W (2007) Generation and analysis of 5318 expressed sequence tags from the filamentous sporophyte of Porphyra haitanensis (Rhodophyta). J Phycol 43:1287–1294

    Article  Google Scholar 

  • Yang H, Mao YX, Kong FN, Yang GP, Ma Fm Wang L (2011) Profiling of the transcriptome of Porphyra yezoenesis with Solexa sequencing technology. Chinese Sci Bull 56:2119–2130

    Article  CAS  Google Scholar 

  • Zhang Y, Mian MA, Chekhovskiy K, So S, Kupfer D, Lai H, Roe BA (2005) Differential gene expression in Festuca under heat stress conditions. J Exp Bot 56:897–907

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by a grant (RP-2011-BT-058) from National Fisheries Research and Development Institute, South Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Woog Choi.

Additional information

S. Choi and M.S. Hwang contributed equally to this paper.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 121 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, S., Hwang, M.S., Im, S. et al. Transcriptome sequencing and comparative analysis of the gametophyte thalli of Pyropia tenera under normal and high temperature conditions. J Appl Phycol 25, 1237–1246 (2013). https://doi.org/10.1007/s10811-012-9921-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-012-9921-2

Keywords

Navigation