Skip to main content
Log in

Detection of immunoactive insulin in Spirulina

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Diabetes mellitus, a metabolic disorder of the endocrine system is found in all parts of the world and is rapidly increasing. People suffering from diabetes cannot produce or properly use insulin, so they have high blood glucose. Currently available antidiabetic agents have a number of serious side effects. Therefore, the search for more effective and safer hypoglycemic agents has continued to be an important area of investigation. There is growing interest throughout the world in Spirulina as a potential source of nutraceutical compounds, which have applications in health foods, feeds, therapeutics and diagnostics. In the present study, insulin is being screened in 23 Spirulina (Arthrospira) strains. The highest concentration (33.9 μg g−1) of insulin was found in Spirulina platensis CFTRI, Mysore. Its presence was further confirmed by SDS-PAGE, Western blotting and HPLC using bovine insulin as a marker. Culture condition manipulation for nitrogen, phosphorus, carbon and sulphate sources enhanced the insulin content in the test organism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Agrawal GK, Iwahashi H, Rakwal R (2003) Rice MAPKs. Biochem Biophys Res Commun 302:171–180

    Article  PubMed  CAS  Google Scholar 

  • Azevedo CR, Maciel FM, Silva LB, Ferreira ATS, da Cunha M, Machado OLT, Fernandes KVS, Oliveira AEA, Xavier Filho J (2000) Isolation and intracellular localization of insulin-like proteins from leaves of Bauhinia variegaae. Brazilian J Med Biol Res 39:1435–1444

    Article  Google Scholar 

  • Babu ML (1995) Evaluation of chemoprevention of oral cancer with Spirulina fusiformis. Nutr Cancer 24:197–202

    Article  Google Scholar 

  • Carpi A, Di Maira G, Vedovato M, Rossi V, Naccari T, Floriduz M (2002) Comparative proteome bioinformatics: identification of a whole complement of putative protein tyrosine kinases in the model flowering plant Arabidopsis thaliana. Proteomics 2:1494–1503

    Article  PubMed  CAS  Google Scholar 

  • Chiou TJ, Bush DR (1996) Molecular cloning, immunochemical localization to the vacuole, and expression in transgenic yeast and tobacco of a putative sugar transporter from sugar beet. Plant Physiol 110:511–520

    Article  PubMed  CAS  Google Scholar 

  • Collier E, Watkinson A, Cleland CF, Roth J (1987) Partial purification and characterization of an insulin-like material from spinach and Lemna gibba G3. J Biol Chem 262:6238–6624

    PubMed  CAS  Google Scholar 

  • Collip JB (1923) Glucokinin. A new hormone present in plant tissue. Preliminary paper. J Biol Chem 56:513–543

    CAS  Google Scholar 

  • D’Souza D, Lecossois M, Heasman J, Diemar C, Jackson, Pendrey R (2000) Evaluation of centrifuged microalgae concentrates as diets for Penaeus monodon Fabricius larvae. Aquac Res 31:661–670

    Article  Google Scholar 

  • Dietrich RA, Richberg MH, Schmidt R, Dean C, Dangl JL (1997) A novel zinc finger protein is encoded by the Arabidopsis LSD1 gene and functions as a negative regulator of plant cell death. Cell 88:685–694

    Article  PubMed  CAS  Google Scholar 

  • Estrada JE, Bescós P, Villar Del Fresno AM (2001) Antioxidant activity of divergent fractions of Spirulina platensis protean extract. J Farmaco 56:497–500

    Article  Google Scholar 

  • Faintuch BL, Sato S, Aquarone E (1991) Influence of the nutritional sources on the growth rate of cyanobacteria. Archiv Biol Technol 34:13–30

    CAS  Google Scholar 

  • Garcia Flores C, Aguilar R, Reyes de la Cruz H, Albores M, Sanchez de Jimenez E (2001) A maize insulin-like growth factor signals to a transduction pathway that regulates protein synthesis in maize. Biochem J 358:95–100

    Article  PubMed  CAS  Google Scholar 

  • Gebara VCB, Petricevich VL, Raw I, Da Silva WD (1995) Effect of saponin from Quillaja saponaria (Molina) on antibody, tumour necrosis factor and interferon-production. Biotechnol Appl Biochem 22:31–37

    PubMed  Google Scholar 

  • Gustafson KR, Cardellina JH II, Fuller RW, Weislow OS, Kiser RK, Snader KM, Gregory ML, Patterson, Boyd MR (1989) AIDS antiviral sulfolipids from cyanobacteria (blue-green algae). J Natl Cancer Inst 8:1254–1258

    Google Scholar 

  • Hayashi T, Hayashi K (1996) Calcium spirulan, an inhibitor of enveloped virus replication, from a bluegreen alga Spirulina platensis. J Nat Prod 59:83–87

    Article  PubMed  CAS  Google Scholar 

  • Hong Z, Verma DP (1994) A phosphatidylinositol 3-kinase is induced during soybean nodule organogenesis and is associated with membrane proliferation. Proc Natl Acad Sci USA 91:9617–9621

    Article  PubMed  CAS  Google Scholar 

  • Jung M, Park M, Lee HC, Kang YH, Kang ES, Kim SK (2006) Antidiabetic agents from medicinal plants. Current Medicinal Chem 13:1203–1218

    Article  CAS  Google Scholar 

  • Khanna P, Nag TN, Jain SC, Mohan SV (1974) Extraction of insulin from a plant source. 3rd International Congress on Plant Tissue and Cell Cultures. 21–26th July, Leicester, UK

  • Khanna P, Nag TN, Chandrajaia S, Mohan S (1976) Process for isolation of insulin from plant source. USA Patent 3:945–988

    Google Scholar 

  • Laemmli UK (1974) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  Google Scholar 

  • Legros F, Uytdenhoef P, Dumont I, Hanson B, Jeanmart J, Massant B, Conard V (1975) Specific binding of insulin to the unicellular alga Acetabularia mediterranea. Protoplasma 86:119–134

    Article  PubMed  CAS  Google Scholar 

  • LeRoith D, Shiloach J, Roth J, Lesniak MA (1980) Evolutionary origins of vertebrate hormones: substances similar to mammalian insulins are native to unicellular eukaryotes. Proc Natl Acad Sci USA 77:6184–6188

    Article  CAS  Google Scholar 

  • LeRoith D, Shiloach J, Roth J, Lesniak MA (1981) Insulin or a closely related molecule is native to Escherichia coli. J Biol Chem 256:6533–6536

    PubMed  CAS  Google Scholar 

  • LeRoith D, Shiloach J, Heffron R, Rubinovitz C, Tanenbaum R, Roth J (1985) Insulin-related material in microbes: similarities and differences from mammalian insulins. Can J Biochem Cell Biol 63:839–849

    Article  PubMed  CAS  Google Scholar 

  • LeRoith D, Delahunty G, Wilson GL, Roberts CT Jr, Shemer J, Hart C, Lesniak MA, Shiloach J, Roth J (1986) Evolutionary aspects of the endocrine and nervous systems. Recent Prog Hormone Res 42:549–587

    CAS  Google Scholar 

  • Lowry OH, Rosenbrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Miranda MS, Cintra RG, Barros SBM, Filho JM (1998) Antioxidant activity of the microalga Spirulina maxima. Brazilian J Med Biol Res 31:1075–1079

    Article  CAS  Google Scholar 

  • Moore B, Zhou L, Rolland F, Hall Q, Cheng WH, Liu YX (2003) Role of the Arabidopsis glucose sensor HXK1 in nutrient, light, and hormonal signaling. Science 300:332–336

    Article  PubMed  CAS  Google Scholar 

  • Mostert ES, Grobbelaar JU (1987) The influence of nitrogen and phosphorus on algal growth and quality in outdoor mass algal cultures. Biomass 13:219–233

    Article  CAS  Google Scholar 

  • Nakaya N, Homma Y, Goto Y (1988) Cholesterol lowering effect of Spirulina. Nutr Rep Int 37:1329–1337

    CAS  Google Scholar 

  • Oliveira AEA, Machado OLT, Gomes VM, Xavier-Neto J, Pereira AC, Vieira JGH, Fernandes KVS, Xavier Filho J (1999) Jack bean seed coat contains a protein with complete sequence homology to bovine insulin. Protein Peptid Lett 6:15–21

    CAS  Google Scholar 

  • Oliveira AEA, Azevedo CR, Venâncio TM (2001) Insulin in plants. Plant Biology-2001, Providence, RI, USA

  • Raven PH, Evert RF, Eichhorn SE (1992) Biology of plants. Worth Publishers, New York, 791 pp

    Google Scholar 

  • Richmond A (2000) Microalgal biotechnology at the turn of the millennium: a personal view. J Appl Phycol 12:441–451

    Article  Google Scholar 

  • Richmond A, Grobbelaar JU (1986) Factors affecting the output rate of Spirulina platensis with reference to mass cultivation. Biomass 10:253–264

    Article  Google Scholar 

  • Rippka R (1988) Isolation and purification of cyanobacteria. In: Packer L, Glazer AN (eds) Methods in enzymology, vol. 167. Academic, New York, pp 3–27

    Google Scholar 

  • Schwartz J, Shklar G (1988) Prevention of experimental oral cancer by extracts of SpirulinaDuraliella algae. Nutr Cancer 11:127–134

    Article  PubMed  CAS  Google Scholar 

  • Silva LB, Santos SSS, Azevedo CR (2002) The leaves of green plants as well as a cyanobacterium, red alga, and fungi contain insulin-like antigens. Braz J Med Biol Res 35:297–303

    Article  PubMed  CAS  Google Scholar 

  • Sower SA, Suzuki K, Reed KL (2000) Perspective: research activity of enteropancreatic and brain/central nervous system hormones across invertebrates and vertebrates. Am Zool 40:165–178

    Article  CAS  Google Scholar 

  • Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Nat Acad Sci USA 76:4350–4354

    Article  PubMed  CAS  Google Scholar 

  • Venâncio TM, Oliveira AEA, Silva LB, Machado OLT, Fernandes KVS, Xavier Filho J (2003) A protein with sequence homology to bovine insulin is found in the legume Vigna unguiculata (cowpea). Braz J Med Biol Res 36:1167–1173

    Article  PubMed  Google Scholar 

  • Vonshak A (ed) (1997) Spirulina platensis (Arthrospira) physiology, cell biology and biotechnology. Ed Vonshak A. Taylor & Francis, London, Great Britain (Preface ix)

    Google Scholar 

  • Watanabe Y, Barbashov SF, Komatsu S, Hemmings AM, Miyagi M, Tsunasawa S, Hirano H (1994) A peptide that stimulates phosphorylation of the plant insulin-binding protein. Isolation, primary structure and cDNA cloning. Eur J Biochem 224:167–172

    Article  PubMed  CAS  Google Scholar 

  • Xavier-Filho J, Oliveira AEA, Silva LB, Azevedo CR, Venâncio TM, Machado OLT (2003) Plant insulin or glucokinin: a conflicting issue. Bras J Plant Physiol 15:67–78

    CAS  Google Scholar 

  • Zarrouk C (1966) Contribution a’ l’e´tude d’une cyanophyce’e. Influence de divers facteurs physiques et chimiques sur la croissance et la photosynthe’se de Spirulina maxima. PhD thesis, Paris

Download references

Acknowledgements

The authors are thankful to Allahabad Univ. Allahabad; University of Madras, Chennai; I.A.R.I, New Delhi; NFMC, Triuchirapalli for providing the test strains and to UGC and CCRUM, India, for providing financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tasneem Fatma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anwer, R., Khursheed, S. & Fatma, T. Detection of immunoactive insulin in Spirulina . J Appl Phycol 24, 583–591 (2012). https://doi.org/10.1007/s10811-011-9757-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-011-9757-1

Keywords

Navigation