Skip to main content

Advertisement

Log in

SunCHem: an integrated process for the hydrothermal production of methane from microalgae and CO2 mitigation

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

We describe a potential novel process (SunCHem) for the production of bio-methane via hydrothermal gasification of microalgae, envisioned as a closed-loop system, where the nutrients, water, and CO2 produced are recycled. The influence on the growth of microalgae of nickel, a trace contaminant that might accumulate upon effluent recycling, was investigated. For all microalgae tested, the growth was adversely affected by the nickel present (1, 5, and 10 ppm). At 25 ppm Ni, complete inhibition of cell division occurred. Successful hydrothermal gasification of the microalgae Phaeodactylum tricornutum to a methane-rich gas with high carbon gasification efficiency (68–74%) and C1–C3 hydrocarbon yields of 0.2 gC1–C3/gDM (DM, dry matter) was demonstrated. The biomass-released sulfur was shown to adversely affect Ru/C catalyst performance. Liquefaction of P. tricornutum at short residence times around 360°C was possible without coke formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aaronson S, Dubinsky Z (1982) Mass production of microalgae. Cell Mol Life Sci 38:36–40

    Google Scholar 

  • Antal MJ, Allen SG, Schulman D, Xu X, Divilio RJ (2000) Biomass gasification in supercritical water. Ind Eng Chem Res 39:4040–4053

    Google Scholar 

  • Bassham JA (1977) Increasing crop production through more controlled photosynthesis. Science 197:630–638. doi:10.1126/science.197.4304.630

    Article  PubMed  CAS  Google Scholar 

  • Benemann JR, Koopman BL, Weissman JC, Eisenberg DM, Goebel P (1980) In: Shelef G, Soeder CJ (eds) Algae biomass: production and use. Elsevier, Amsterdam, pp 457–496

    Google Scholar 

  • Bielmyer GK, Grosell M, Brix KV (2006) Toxicity of silver, zinc, copper, and nickel to the copepod Acartia tonsa exposed via a phytoplankton diet. Environ Sci Technol 40(6):2063–2068. doi:10.1021/es051589a

    Article  PubMed  CAS  Google Scholar 

  • Bordons A, Jafre J (1987) Extracellular adsorption of nickel by a strain of Pseudomonas sp. Enzyme Microb Technol 9(12):709–713. doi:10.1016/0141–0229(87)90029–9

    Article  CAS  Google Scholar 

  • Cantrell KB, Ducey T, Ro KS, Hunt PG (2008) Livestock waste to bioenergy generation opportunities. Bioresour Technol 99(17):7941–7953. doi:10.1016/j.biortech.2008.02.061

    Article  PubMed  CAS  Google Scholar 

  • Carlsson AS, van Beilen JB, Möller R, Clayton D, Bowles D (eds) (2007) Micro- and macro-algae: utility for industrial applications. Outputs from the EPOBIO project. CPL Press, Newbury, UK, http://www.epobio.net/pdfs/0709AquaticReport.pdf

  • Cassarett L, Doull J (eds) (1980) Toxicology, 2nd edn. Macmillan, New York

    Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306. doi:10.1016/j.biotechadv.2007.02.001

    Article  PubMed  CAS  Google Scholar 

  • Duret A, Friedli C, Marechal F (2005) Process design of Synthetic Natural Gas (SNG) production using wood gasification. J Cleaner Prod 13:1434–1446

    Google Scholar 

  • Eaton AD, Clesceri LS, Rice EW, Greenberg AE (eds) (2005) Standard methods for the examination of water and wastewater (21st edn). APHA, Washington, DC, USA

  • Elliott DC, Hart TR, Neuenschwander GG (2006) Chemical processing in high-pressure aqueous environments. 8. Improved catalysts for hydrothermal gasification. Ind Eng Chem Res 45:3776–3781. doi:10.1021/ie060031o

    Article  CAS  Google Scholar 

  • Fezy JS, Spencer DF, Greene RW (1979) The effect of nickel on the growth of the freshwater diatom Navicula Pelliculosa. Environ Pollut 20:131–136. doi:10.1016/0013–9327(79)90065-X

    Article  CAS  Google Scholar 

  • Golueke CG, Oswald WJ (1963) Power from solar energy - via algae-produced methane. Sol Energy 7:86–92. doi:10.1016/0038–092X(63)90033–1

    Article  CAS  Google Scholar 

  • Grobbelaar JU (2004) Algal nutrition: mineral nutrition. In: Richmond A (ed) Handbook of microalgal culture: biotechnology and applied phycology. Blackwell Publishing, Oxford UK, pp 97–115

    Google Scholar 

  • Hall DO, Mynick HE, Williams RH (1991) Cooling the greenhouse with bioenergy. Nature 353:11–12. doi:10.1038/353011a0

    Article  Google Scholar 

  • Hase R, Oikawa H, Sasao C, Morita M, Watanabe Y (2000) Photosynthetic production of microalgal biomass in a raceway system under greenhouse conditions in Sendai City. J Biosci Bioeng 89:157–163. doi:10.1016/S1389–1723(00)88730–7

    Article  PubMed  CAS  Google Scholar 

  • Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54:621–639. doi:10.1111/j.1365–313X.2008.03492.x

    Article  PubMed  CAS  Google Scholar 

  • Kruse A (2008) Hydrothermal biomass gasification. J Supercritical Fluids (in press). doi:10.1016/ j.supflu.2008.10.009

  • Kruse A, Krupka A, Schwarzkopf V, Gamard C, Henningse T (2005) Influence of proteins on the hydrothermal gasification and liquefaction of biomass 1. Comparison of different feedstocks. Ind Eng Chem Res 44:3013–3020. doi:10.1021/ie049129y

    Article  CAS  Google Scholar 

  • Kruse A, Maniam P, Spieler F (2007) Influence of proteins on the hydrothermal gasification and liquefaction of biomass 2. Model compounds. Ind Eng Chem Res 46(1):87–96. doi:10.1021/ie061047h

    Article  CAS  Google Scholar 

  • Lee L, Lustigman H (1996) Effect of barium and nickel on the growth of Anacystis nidulans. Bull Environ Contam Toxicol 56:985–992. doi:10.1007/s001289900142

    Article  PubMed  CAS  Google Scholar 

  • Lustigman B, Lee LH, Khalil A (1995) Effects of nickel and pH on the growth of Chlorella vulgaris. Bull Environ Contam Toxicol 55:73–80. doi:10.1007/BF00212391

    Article  PubMed  CAS  Google Scholar 

  • Luterbacher JS, Fröling M, Vogel F, Maréchal F, Tester JW (2009) Hydrothermal gasification of waste biomass. Sustainable process development using life cycle assessment. Environ Sci Technol (in press)

  • Mandal R, Hassan NM, Murimboh J, Chakrabarti CL, Back MH (2002) Chemical speciation and toxicity of nickel species in natural waters from the Sudbury Area (Canada). Environ Sci Technol 36:1477–1484. doi:10.1021/es015622e

    Article  PubMed  CAS  Google Scholar 

  • Matsumura Y, Minowa T, Potic B, Kersten SRA, Prins W, van Swaaij WPM, van de Beld B, Elliott DC, Neuenschwander GG, Kruse A, Jerry A Jr (2005) Biomass gasification in near- and super-critical water: status and prospects. Biomass Bioenergy 29:269–292. doi:10.1016/j.biombioe.2005.04.006

    Article  CAS  Google Scholar 

  • Modell M (1985) Gasification and liquefaction of forest products in supercritical water. In: Overend RP, Milne TA, Mudge LK Jr (eds) Fundamentals of thermochemical biomass conversion. Elsevier, Amsterdam, pp 937–950

    Google Scholar 

  • Nagase H, Yoshihara K, Okamoto Y, Murasaki S, Yamashita R, Hirata K, Miyamoto K (2001) Uptake pathway and continuous removal of nitric oxide from flue gas using microalgae. Biochem Eng J 7:241–246. doi:10.1016/S1369–703X(00)00122–4

    Google Scholar 

  • Nakajima Y, Tsuzuki M, Ueda R (2001) Improved productivity by reduction of the content of light-harvesting pigment in Chlamydomonas perigranulata. J Appl Phycol 13:95–101. doi:10.1023/A:1011192832502

    Article  CAS  Google Scholar 

  • Nriagu JO (1980) Nickel in the environment. Wiley-Interscience, Chichester

    Google Scholar 

  • Osada M, Hiyoshi N, Sato O, Arai K, Shirai M (2007) Reaction pathway for catalytic gasification of lignin in presence of sulfur in supercritical water. Energy Fuels 21:1854–1858. doi:10.1021/ef0701642

    Article  CAS  Google Scholar 

  • Peterson AA, Vogel F, Lachance RP, Fröling M, Antal MJ Jr, Tester JW (2008) Thermochemical biofuel production in hydrothermal media: a review of sub- and supercritical water technologies. Energy Environ Sci 1:32–65

    Google Scholar 

  • Pirt SJ (1980) The effects of oxygen and carbon dioxide partial pressures on the rate and efficiency of algal (Chlorella) photosynthesis. Biochem Soc Trans 8:479–481

    PubMed  CAS  Google Scholar 

  • Rachlin JW, Grosso A (1993) The growth response of the green alga Chlorella vulgaris to combined divalent cation exposure. Arch Environ Contam Toxicol 24:16–20. doi:10.1007/BF01061084

    Article  PubMed  CAS  Google Scholar 

  • Richmond A (2004) Biological principles of mass cultivation. In: Richmond A (ed) Handbook of microalgal culture: biotechnology and applied phycology. Blackwell Publishing, Oxford, pp 125–177

    Google Scholar 

  • Samson R, Leduy A (1982) Biogas production from anaerobic digestion of Spirulina maxima algal biomass. Biotechnol Bioeng 24:1919–1924. doi:10.1002/bit.260240822

    Article  PubMed  CAS  Google Scholar 

  • Sanz-Medel A (1998) Toxic trace metal speciation: Importance and tools for environmental and biological analysis. Pure Appl Chem 70:2281–2285. doi:10.1351/pac199870122281

    Article  CAS  Google Scholar 

  • Schubert M, Regler JW, Brandenberger M, Ludwig C, Vogel F (2008) Salt separation as a crucial step in continuous catalytic hydrothermal gasification of wet biomass to SNG. Poster session, 16th European Biomass Conference & Exhibition, Valencia, Spain, June 2–6, 2008

  • Spencer DF, Greene RW (1981) Effects of Nickel on seven species of freshwater algae. Environ Pollut Ser A 25:241–247. doi:10.1016/0143–1471(81)90086–6

    Article  CAS  Google Scholar 

  • Tam NFY, Wong JPK, Wong YS (2001) Repeated use of two Chlorella species, C. vulgaris and WW for cyclic nickel biosorption. Environ Pollut 114:85–92. doi:10.1016/S0269–7491(00)00202–5

    Article  PubMed  CAS  Google Scholar 

  • Tsukahara K, Kimura T, Minowa T, Sawayama S (2001) Microalgal cultivation in a solution recovered from the low-temperature catalytic gasification of the microalga. J Biosci Bioeng 91:311–313. doi:10.1263/jbb.91.311

    Article  PubMed  CAS  Google Scholar 

  • Vogel F (2009) Catalytic conversion of high-moisture biomass to synthetic natural gas in supercritical water. In: Crabtree R (ed) Heterogeneous catalysis. Handbook of Green Chemistry, vol 3. Wiley, Weinheim

  • Vogel F, Hildebrand F (2002) Catalytic hydrothermal gasification of woody biomass at high feed concentrations. Chem Eng Trans 2:771–777

    Google Scholar 

  • Vogel F, Waldner MH, Rouff AA, Rabe S (2007) Synthetic natural gas from biomass by catalytic conversion in supercritical water. Green Chem 9:616–619. doi:10.1039/b614601e

    Article  CAS  Google Scholar 

  • Waldner MH (2007) Catalytic hydrothermal gasification of biomass for the production of synthetic natural gas. PhD thesis. ETH Zürich, Switzerland

    Google Scholar 

  • Waldner MH, Vogel F (2005) Renewable production of methane from woody biomass by catalytic hydrothermal gasification. Ind Eng Chem Res 44(13):4543–4551. doi:10.1021/ie050161h

    Article  CAS  Google Scholar 

  • Waldner MH, Krumeich F, Vogel F (2007) Synthetic natural gas by hydrothermal gasification of biomass: selection procedure towards a stable catalyst and its sodium sulfate tolerance. J Supercrit Fluids 43:91–105. doi:10.1016/j.supflu.2007.04.004

    Article  CAS  Google Scholar 

  • Wang B (2008) CO2 bio-mitigation using microalgae. Appl Microbiol Biotechnol 79:707–718. doi:10.1007/s00253–008–1518-y

    Article  PubMed  CAS  Google Scholar 

  • Wang HK, Wood JM (1984) Bioaccumulation of nickel by algae. Environ Sci Tech 18:106–109

    Article  CAS  Google Scholar 

  • Wijffels RH (2008) Potential of sponges and microalgae for marine biotechnology. Trends Biotechnol 26:26–31. doi:10.1016/j.tibtech.2007.10.002

    Article  PubMed  CAS  Google Scholar 

  • Wong JPK, Wong YS, Tam NFY (2000) Nickel biosorption by two chlorella species, C. vulgaris (a commercial species) and C. Miniata (a local isolate). Bioresour Technol 73:133–137. doi:10.1016/S0960–8524(99)00175–3

    Article  CAS  Google Scholar 

  • Worms IAM, Wilkinson KJ (2007) Ni uptake by a green alga: 2. Validation of the equilibrium models for competition effects. Environ Sci Technol 41:4264–4270. doi:10.1021/es0630341

    Article  PubMed  CAS  Google Scholar 

  • Yoshida Y, Dowaki K, Matsumura Y, Matsuhashi R, Li D, Ishitani H, Komiyama H (2003) Comprehensive comparison of efficiency and CO2 emissions between biomass energy conversion technologies — position of supercritical water gasification in biomass technologies. Biomass Bioenergy 25:257–272. doi:10.1016/S0961–9534(03)00016–3

    Article  CAS  Google Scholar 

  • Zwart RWR, Boerrigter H (2005) High efficiency co-production of synthetic natural gas (SNG) and Fischer-Tropsch (FT) transportation fuels from biomass. Energy Fuels 19:591–597. doi:10.1021/ef049837w

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project is financially supported by VELUX STIFTUNG (project Nr. 405). Technical and analytical support by Jean-David Teuscher, Simona Regenspurg (EPFL), Martin Schubert, Albert Schuler, Johann Regler (PSI) and fruitful discussions with Pilar Junier (EPFL) are greatly acknowledged. The authors are particularly grateful to Samuel Stucki, the initiator of this project, for his continuous support and encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anca G. Haiduc.

Additional information

Paper presented at the 3rd Congress of the International Society for Applied Phycology, Galway.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haiduc, A.G., Brandenberger, M., Suquet, S. et al. SunCHem: an integrated process for the hydrothermal production of methane from microalgae and CO2 mitigation. J Appl Phycol 21, 529–541 (2009). https://doi.org/10.1007/s10811-009-9403-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-009-9403-3

Keywords

Navigation