Skip to main content
Log in

On the discharge characteristic at the dam site after dam break

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

A review of the information available in the literature is given, and new experimental data on the depth and discharge at the dam site after a total and a partial dam break are presented. It is shown that in the case of a partial dam break with the formation of a rectangular breach, the specific discharge per unit width of the breach is higher than the specific discharge in the case of a total dam break with the same excess initial energy in the headwater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. J. Stoker, Water Waves, Interscience, New York (1957).

    MATH  Google Scholar 

  2. V. V. Ostapenko, “Dam break flows over a bottom step,” J. Appl. Mech. Tech. Phys., 44, No. 6, 495–505 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  3. V. Yu Liapidevskii, “Shallow-water equations with dispersion. Hyperbolic model,” J. Appl. Mech. Tech. Phys., 39, No. 2, 194–199 (1998).

    Article  MathSciNet  Google Scholar 

  4. V. B. Barakhnin, T. V. Krasnoshchekova, and I. N. Potapov, “Reflection of a dam-break wave at a vertical wall. Numerical modeling and experiment,” J. Appl. Mech. Tech. Phys., 42, No. 2, 269–275 (2001).

    Article  Google Scholar 

  5. A. A. Atavin, O. F. Vasil’ev, A. F. Voevodin, and S. M. Shugrin, “Numerical methods for the solution of one-dimensional problems of hydraulics,” Vodn. Resursy, 4, 38–47 (1983).

    Google Scholar 

  6. V. V. Belikov, A. A. Zaitsev, and A. N. Militeev, “Mathematical modeling of complex segments of large riverbeds,” Vodn. Resursy, 29, No. 6, 698–705 (2002).

    Google Scholar 

  7. G. Colicchio, A. Colagrossi, M. Greco, and M. Landrini, “Free-surface flow after a dam break: A comparative study,” Schi.stechnik, 49, No. 3, 95–104 (2002).

    Google Scholar 

  8. V. Yu. Liapidevskii, “Structure of a turbulent bore in a homogeneous fluid,” J. Appl. Mech. Tech. Phys., 40, No. 2, 238–248 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  9. O. F. Vasil’ev “Mathematical modeling of hydraulic and hydrological processes in water reservoirs and water courses: Review of the research performed at the Siberian Division of the Russian Academy of Sciences,” Vodn. Resursy, 26, No. 5, 600–611 (1999).

    Google Scholar 

  10. V. V. Belikov and A. N. Militeev, “Two-layer mathematical model of catastrophic high waters,” Vychisl. Tekhnol., 1, No. 3, 167–174 (1992).

    Google Scholar 

  11. V. I. Bukreev, A. V. Gusev, and V. V. Ostapenko, “Open-channel waves that form after removal of a shield ahead of an uneven shelf-type bottom,” Vodn. Resursy, 31, No. 5, 540–545 (2004).

    Google Scholar 

  12. V. I. Bukreev, A. V. Gusev, and V. V. Ostapenko, “Free-surface discontinuity decay above a drop of a channel bottom,” Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza, 6, 72–83 (2003).

    MATH  Google Scholar 

  13. P. G. Kiselev, Handbook on Hydraulic Calculations [in Russian], Gosénergoizdat, Moscow (1957).

    Google Scholar 

  14. V. I. Bukreev and A. V. Gusev, “Initial stage of generation of dam-break waves,” Dokl. Ross. Akad. Nauk, 401, No. 5, 619–622 (2005).

    Google Scholar 

  15. V. I. Bukreev, “On the critical velocities and depths for nonuniform stationary flow in an open channel,” Vodn. Resursy, 31, No. 1, 40–45 (2004).

    Google Scholar 

  16. R. F. Dressler, “Comparison of theories and experiments for the hydraulic dam-break wave,” it Int. Assoc. Sci. Hydrol., 3, No. 38, 319–328 (1954).

    Google Scholar 

  17. V. I. Bukreev, A. V. Gusev, A. A. Malysheva, and I. A. Malysheva, “Experimental verification of the gashydraulic analogy by the example of the dam break problem,” Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza, 5, 143–152 (2004).

    Google Scholar 

  18. V. I. Bukreev and A. V. Gusev, “Gravity waves due to discontinuity decay over an open-channel bottom drop,” J. Appl. Mech. Tech. Phys., 44, No. 4, 506–515 (2003).

    Article  Google Scholar 

  19. V. I. Bukreev, “On the water depth in the breach during a partial dam break,” Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza, 5, 115–123 (2005).

    Google Scholar 

  20. V. I. Bukreev, “Undular jump in open-channel flow over a sill,” Appl. Mech. Tech. Phys., 42, No. 4, 596–602 (2001).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 47, No. 5, pp. 77–87, September–October, 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bukreev, V.I. On the discharge characteristic at the dam site after dam break. J Appl Mech Tech Phys 47, 679–687 (2006). https://doi.org/10.1007/s10808-006-0104-2

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10808-006-0104-2

Key words

Navigation