Skip to main content
Log in

Typical and Atypical Neurodevelopment for Face Specialization: An fMRI Study

  • Original Paper
  • Published:
Journal of Autism and Developmental Disorders Aims and scope Submit manuscript

Abstract

Individuals with autism spectrum disorder (ASD) and their relatives process faces differently from typically developed (TD) individuals. In an fMRI face-viewing task, TD and undiagnosed sibling (SIB) children (5–18 years) showed face specialization in the right amygdala and ventromedial prefrontal cortex, with left fusiform and right amygdala face specialization increasing with age in TD subjects. SIBs showed extensive antero-medial temporal lobe activation for faces that was not present in any other group, suggesting a potential compensatory mechanism. In ASD, face specialization was minimal but increased with age in the right fusiform and decreased with age in the left amygdala, suggesting atypical development of a frontal–amygdala–fusiform system which is strongly linked to detecting salience and processing facial information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aylward, E. H., Park, J. E., Field, K. M., Parsons, A. C., Richards, T. L., & Cramer, S. C. (2005). Brain activation during face perception: Evidence of a developmental change. Journal of Cognitive Neuroscience, 17, 308–319.

    Article  PubMed  Google Scholar 

  • Bailey, A. J., Braeutigam, S., Jousmaki, V., & Swithenby, S. J. (2005). Abnormal activation of face processing systems at early and intermediate latency in individuals with autism spectrum disorder: A magnetoencephalographic study. European Journal of Neuroscience, 21, 2575–2585.

    Article  PubMed  Google Scholar 

  • Baron-Cohen, S., Ring, H., Chitnis, X., Wheelwright, S., Gregory, L., Williams, S., et al. (2006). fMRI of parents of children with Asperger syndrome: A pilot study. Brain and Cognition, 61(1), 122–130.

    Article  PubMed  Google Scholar 

  • Baron-Cohen, S., Ring, H. A., Wheelwright, S., Bullmore, E. T., Brammer, M. J., Simmons, A., et al. (1999). Social intelligence in the normal and autistic brain: An fMRI study. European Journal of Neuroscience, 11(6), 1891–1898.

    Article  PubMed  Google Scholar 

  • Belmonte, M. K., Gomot, M., & Baron-Cohen, S. (2010). Visual attention in autism families: ‘Unaffected’ sibs share atypical frontal activation. Journal of Child Psychology and Psychiatry and Allied Disciplines, 51(3), 259–276.

    Article  Google Scholar 

  • Bolte, S., & Poustka, F. (2003). The recognition of facial affect in autistic and schizophrenic subjects and their first-degree relatives. Psychological Medicine, 33(5), 907–915.

    Article  PubMed  Google Scholar 

  • Bookheimer, S., Wang, A. T., Scott, A., Sigman, M., & Dapretto, M. (2008). Frontal contributions to face processing differences in autism: Evidence from fMRI of inverted face processing. Journal of the International Neuropsychological Society, 14(6), 922–932.

    Article  PubMed Central  PubMed  Google Scholar 

  • Cantlon, J. F., Pinel, P., Dehaene, S., & Pelphrey, K. A. (2011). Cortical representations of symbols, objects, and faces are pruned back during early childhood. Cerebral Cortex, 21(1), 191–199.

    Article  PubMed Central  PubMed  Google Scholar 

  • Constantino, J. N., Davis, S. A., Todd, R. D., Schindler, M. K., Gross, M. M., Brophy, S. L., et al. (2003). Validation of a brief quantitative measure of autistic traits: Comparison of the social responsiveness scale with the autism diagnostic interview-revised. Journal of Autism and Developmental Disorders, 33(4), 427–433.

    Article  PubMed  Google Scholar 

  • Corbett, B. A., Carmean, V., Ravizza, S., Wendelken, C., Henry, M. L., Carter, C., et al. (2009). A functional and structural study of emotion and face processing in children with autism. Psychiatry Research: Neuroimaging, 173, 196–205.

    Article  PubMed Central  PubMed  Google Scholar 

  • Dalton, K. M., Nacewicz, B. M., Alexander, A. L., & Davidson, R. J. (2007). Gaze-fixation, brain activation, and amygdala volume in unaffected siblings of individuals with autism. Biological Psychiatry, 61, 512–560.

    Article  PubMed  Google Scholar 

  • Dalton, K. M., Nacewicz, B. M., Johnstone, T., Schaefer, H. S., Gernsbacher, M. A., Goldsmith, H. H., et al. (2005). Gaze fixation and the neural circuitry of face processing in autism. Nature Neuroscience, 8(4), 519–526.

    PubMed Central  PubMed  Google Scholar 

  • Dawson, G., Carver, L., Meltzoff, A. N., Panagiotides, H., McPartland, J., & Webb, S. J. (2002). Neural correlates of face and object recognition in young children with autism spectrum disorder, developmental delay, and typical development. Child Development, 73(3), 700–717.

    Article  PubMed Central  PubMed  Google Scholar 

  • DiMartino, A., Ross, K., Uddin, L. Q., Sklar, A., Castellanos, F. X., & Milham, M. P. (2009). Functional brain correlates of social and nonsocial processes in autism spectrum disorders: An activation likelihood estimation meta-analysis. Biological Psychiatry, 65, 63–74.

    Article  Google Scholar 

  • Domes, G., Heinrichs, M., Kumbier, E., Grossmann, A., Hauenstein, K., & Herpertz, S. C. (2013). Effects of intranasal oxytocin on the neural basis of face processing in autism spectrum disorder. Biological Psychiatry, 74(3), 164–171.

    Article  PubMed  Google Scholar 

  • Dunn, L. M., & Dunn, L. M. (1997). Peabody Picture Vocabulary Test (3rd ed.). Circle Pines, MN: American Guidance Service.

    Google Scholar 

  • Ebner, N. C., Johnson, M. R., Rieckmann, A., Durbin, K. A., Johnson, M. K., & Fischer, H. (2013). Processing own-age vs. other-age faces: Neuro-behavioral correlates and effects of emotion. Neuroimage, 78, 363–371.

    Article  PubMed Central  PubMed  Google Scholar 

  • Gathers, A. D., Bhatt, R. S., Corbly, C. R., Farley, A. B., & Joseph, J. E. (2004). Developmental shifts in cortical loci for face and object recognition. NeuroReport, 15(10), 1549–1553.

    Article  PubMed  Google Scholar 

  • Golarai, G., Ghahremani, D. G., Whitfield-Gabrieli, S., Reiss, A., Eberhardt, J. L., Gabrieli, J. D., et al. (2007). Differential development of high-level visual cortex correlates with category-specific recognition memory. Nature Neuroscience, 10(4), 512–522.

    PubMed Central  PubMed  Google Scholar 

  • Golarai, G., Liberman, A., Yoon, J., & Grill-Spector, K. (2010). Differential development of the ventral visual cortex extends through adolescence. Frontiers in Human Neuroscience., 3, 80.

    PubMed Central  PubMed  Google Scholar 

  • Grelotti, D. J., Klin, A. J., Gauthier, I., Skudlarski, P., Cohen, D. J., Gore, J. C., et al. (2005). fMRI activation of the fusiform gyrus and amygdala to cartoon characters but not to faces in a boy with autism. Neuropsychologia, 43(3), 373–385.

    Article  PubMed  Google Scholar 

  • Grice, S. J., Spratling, M. W., Karmiloff-Smith, A., Halit, H., Csibra, G., de Haan, M., et al. (2001). Disordered visual processing and oscillatory brain activity in autism and Williams Syndrome. NeuroReport, 12(12), 2697–2700.

    Article  PubMed  Google Scholar 

  • Guyer, A. E., Monk, C. S., McClure-Tone, E. B., Nelson, E. E., Roberson-Nay, R., Adler, A. D., et al. (2008). A developmental examination of amygdala response to facial expressions. Journal of Cognitive Neuroscience, 20(9), 1565–1582.

    Article  PubMed Central  PubMed  Google Scholar 

  • Hadjikhani, N., Joseph, R. M., Snyder, J., & Tager-Flusberg, H. (2007). Abnormal activation of the social brain during face perception in autism. Human Brain Mapping, 28(5), 431–440.

    Article  Google Scholar 

  • Hadjikhani, N., Joseph, R. M., Synder, J., Chabris, C. F., Clark, J., Steele, S., et al. (2004). Early visual cortex organization in autism: An fMRI study. NeuroReport, 15(2), 267–270.

    Article  PubMed  Google Scholar 

  • Haist, F., Lee, K., & Stiles, J. (2010). Individuating faces and common objects produces equal responses in putative face-processing areas in the ventral occipitotemporal cortex. Frontiers in Human Neurosciences, 4, 181.

  • Hall, G. B., Doyle, K. A., Goldberg, J., West, D., & Szatmari, P. (2010). Amygdala engagement in response to subthreshold presentations of anxious face stimuli in adults with autism spectrum disorders: preliminary insights. PLoS ONE, 5(5), e10804.

    Article  PubMed Central  PubMed  Google Scholar 

  • Hoehl, S., Brauer, J., Brasse, G., Striano, T., & Friederici, A. D. (2010). Children’s processing of emotions expressed by peers and adults: An fMRI study. Social Neuroscience, 5(5–6), 543–559.

    Article  PubMed  Google Scholar 

  • Hubl, D., Bolte, S., Feines-Matthews, S., Lanfermann, H., Federspiel, A., Strik, W., et al. (2003). Functional imbalance of visual pathways indicates alternative face processing strategies in autism. Neurology, 61(9), 1232–1237.

    Article  PubMed  Google Scholar 

  • Humphreys, K., Hasson, U., Avidan, G., Minshew, N., & Behrmann, M. (2008). Cortical patterns of category-selective activation for faces, places and objects in adults with autism. Autism Research, 1(1), 52–63.

    Article  PubMed Central  PubMed  Google Scholar 

  • Jemel, B., Mottron, L., & Dawson, M. (2006). Impaired face processing in autism: Fact or artifact? Journal of Autism and Developmental Disorders, 36(1), 91–106.

    Article  PubMed  Google Scholar 

  • Johnson, M. H., Griffin, R., Csibra, G., Halit, H., Farroni, T., De Haan, M., et al. (2005). The emergence of the social brain network: Evidence from typical and atypical development. Development and Psychopathology, 17(3), 599–619.

    Article  PubMed Central  PubMed  Google Scholar 

  • Joseph, J. E., & Farley, A. B. (2004). Cortical regions associated with different aspects of object recognition performance. Cognitive, Affective, & Behavioral Neuroscience, 4, 364–378.

  • Joseph, J. E., & Gathers, A. D. (2003). Effects of structural similarity on neural substrates for object recognition. Cognitive, Affective, & Behavioral Neuroscience, 3, 1–16.

  • Joseph, J. E., Gathers, A. D., & Bhatt, R. (2011). Progressive and regressive developmental changes in neural substrates for face processing: Testing specific predictions of the interactive specialization account. Developmental Science, 14(2), 227–241.

    Article  PubMed Central  PubMed  Google Scholar 

  • Kaiser, M. D., Hudac, C. M., Shultz, S., Lee, S. M., Cheung, C., Berken, A. M., et al. (2010). Neural signatures of autism. Proceedings of the National Academy of Sciences of the USA, 107(49), 21223–21228.

    Article  PubMed Central  PubMed  Google Scholar 

  • Kanwisher, N., McDermott, J., & Chun, M. M. (1997). The fusiform face area: A module in human extrastriate cortex specialized for face perception. Journal of Neuroscience, 17(11), 4302–4311.

    PubMed  Google Scholar 

  • Killgore, W. D., & Yurgelun-Todd, D. A. (2007). Unconscious processing of facial affect in children and adolescents. Social Neuroscience, 2(1), 28–47.

    Article  PubMed  Google Scholar 

  • Kleinhans, N. M., Johnson, L. C., Richards, T., Mahurin, R., Greenson, J., Dawson, G., et al. (2009). Reduced neural habituation in the amygdala and social impairments in autism spectrum disorders. American Journal of Psychiatry, 166(4), 467–475.

    Article  PubMed  Google Scholar 

  • Kleinhans, N., Richards, T. L., Johnson, L. C., Weaver, K., Greenson, J., Dawson, G., et al. (2011). fMRI evidence of neural abnormalities in the subcortical face processing system in ASD. NeuroImage, 54, 697–704.

    Article  PubMed Central  PubMed  Google Scholar 

  • Kleinhans, N. M., Richards, T., Sterling, L., Stegbauer, K. C., Mahurin, R., Johnson, L. C., et al. (2008). Abnormal functional connectivity in autism spectrum disorders during face processing. Brain, 131, 1000–1012.

    Article  PubMed  Google Scholar 

  • Kleinhans, N., Richards, T., Weaver, K., Johnson, L. C., Greenson, J., Dawson, G., et al. (2010). Association between amygdala response to emotional faces and social anxiety in autism spectrum disorders. Neuropsychologia, 48, 3665–3670.

    Article  PubMed Central  PubMed  Google Scholar 

  • Koshino, H., Kana, R. K., Keller, T. A., Cherkassky, V. L., Minshew, N. J., & Just, M. A. (2008). fMRI investigation of working memory for faces in autism: Visual coding and underconnectivity with frontal areas. Cerebral Cortex, 18(2), 289–300.

    Article  PubMed  Google Scholar 

  • Kriegeskorte, N., Simmons, W. K., Bellgowan, P. S., & Baker, C. I. (2009). Circular analysis in systems neuroscience: The dangers of double dipping. Nature Neuroscience, 12(5), 535–540.

    Article  PubMed Central  PubMed  Google Scholar 

  • Liu, X., Steinmetz, N. A., Farley, A. B., Smith, C. D., & Joseph, J. E. (2008). Mid-fusiform activation during object discrimination reflects the process of differentiating structural descriptions. Journal of Cognitive Neuroscience, 20, 1711–1726.

  • Lobaugh, N. J., Gibson, E., & Taylor, M. J. (2006). Children recruit distinct neural systems for implicit emotional face processing. NeuroReport, 17(2), 215–219.

    Article  PubMed  Google Scholar 

  • Lord, C., Rutter, M., DiLavore, P. C., & Risi, S. (2007). Autism diagnostic observation schedule. Los Angeles, CA: Western Psychological Services.

    Google Scholar 

  • Marusak, H. A., Carre, J. M., & Thomason, M. E. (2013). The stimuli drive the response: An fMRI study of youth processing adult or child emotional face stimuli. NeuroImage, 83, 679–689.

    Article  PubMed  Google Scholar 

  • McClure, E. B. (2000). A meta-analytic review of sex differences in facial expression processing and their development in infants, children, and adolescents. Psychological Bulletin, 126(3), 424–453.

    Article  PubMed  Google Scholar 

  • McPartland, J., Dawson, G., Webb, S. J., Panagiotides, H., & Carver, L. (2004). Event-related brain potentials reveal anomalies in temporal processing of faces in autism spectrun disorder. Journal of Child Psychology and Psychiatry, 45(7), 1235–1245.

    Article  PubMed  Google Scholar 

  • Minshew, N. J., & Keller, T. A. (2010). The nature of brain dysfunction in autism: Functional brain imaging studies. Current Opinion in Neurology, 23(2), 124–130.

    Article  PubMed Central  PubMed  Google Scholar 

  • Monk, C. S., Weng, S.-J., Wiggins, J. L., Kurapati, N., Louro, H. M. C., Carrasco, M., et al. (2010). Neural circuitry of emotional face processing in autism spectrum disorders. Journal of Psychiatry and Neuroscience, 35(2), 105–114.

    Article  PubMed Central  PubMed  Google Scholar 

  • O’Connor, K., Hamm, J. P., & Kirk, I. J. (2005). The neurophysiological correlates of face processing in adults and children with Asperger’s syndrome. Brain and Cognition, 59, 82–95.

    Article  PubMed  Google Scholar 

  • Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9(1), 97–113.

    Article  PubMed  Google Scholar 

  • Pagliaccio, D., Luby, J. L., Gaffrey, M. S., Belden, A. C., Botteron, K. N., Harms, M. P., et al. (2013). Functional brain activation to emotional and nonemotional faces in healthy children: Evidence for developmentally undifferentiated amygdala function during the school-age period. Cognitive, Affective, & Behavioral Neuroscience, 13(4), 771–789.

    Article  Google Scholar 

  • Passarotti, A. M., Paul, B. M., Bussiere, J. R., Buxton, R. B., Wong, E. C., & Stiles, J. (2003). The development of face and location processing: An fMRI study. Developmental Science., 6(1), 100–117.

    Article  Google Scholar 

  • Pelphrey, K., Lopez, J., & Morris, J. P. (2009). Developmental continuity and change in responses to social and nonsocial categories in human extrastriate visual cortex. Frontiers in Human Neuroscience, 3(25), 1–9.

    Google Scholar 

  • Pelphrey, K. A., Sasson, N. J., Reznick, J. S., Paul, G., Goldman, B. D., & Piven, J. (2002). Visual scanning of faces in autism. Journal of Autism and Developmental Disorders, 32(4), 249–261.

    Article  PubMed  Google Scholar 

  • Perlman, S. B., Hudac, C. M., Pegors, T., Minshew, N. J., & Pelphrey, K. A. (2011). Experimental manipulation of face-evoked activity in the fusiform gyrus of individuals with autism. Social Neuroscience, 6(1), 22–30.

    Article  PubMed Central  PubMed  Google Scholar 

  • Pierce, K., Haist, F., Sedaghat, F., & Courchesne, E. (2004). The brain response to personally familiar faces in autism: Findings of fusiform activity and beyond. Brain: A Journal of Neurology, 127(Pt 12), 2703–2716.

    Article  Google Scholar 

  • Pierce, K., Muller, R. A., Ambrose, J., Allen, G., & Courchesne, E. (2001). Face processing occurs outside the fusiform “face area” in autism: Evidence from functional MRI. Brain, 124, 2059–2073.

    Article  PubMed  Google Scholar 

  • Pierce, K., & Redcay, E. (2008). Fusiform function in children with an autism spectrum disorder is a matter of “who”. Biological Psychiatry, 64(7), 552–560.

    Article  PubMed Central  PubMed  Google Scholar 

  • Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L., & Petersen, S. E. (2012). Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. NeuroImage, 59(3), 2142–2154.

    Article  PubMed Central  PubMed  Google Scholar 

  • Power, J. D., Mitra, A., Laumann, T. O., Snyder, A. Z., Schlaggar, B. L., & Petersen, S. E. (2013). Methods to detect, characterize, and remove motion artifact in resting state fMRI. NeuroImage, 84C, 320–341.

    Google Scholar 

  • Rutter, M., Le Couteur, A., & Lord, C. (2005). Autism Diagnostic Interview revised (ADIR). Los Angeles, CA: Western Psychological Association.

    Google Scholar 

  • Santos, A., Mier, D., Kirsch, P., & Meyer-Lindenberg, A. (2011). Evidence for a general face salience signal in human amygdala. NeuroImage, 54(4), 3111–3116.

    Article  PubMed  Google Scholar 

  • Scherf, K. S., Behrmann, M., & Dahl, R. E. (2012). Facing changes and changing faces in adolescence: A new model for investigating adolescent-specific interactions between pubertal, brain and behavioral development. Developmental Cognitive Neuroscience, 2(2), 199–219.

    Article  PubMed  Google Scholar 

  • Scherf, K. S., Behrmann, M., Humphreys, K., & Luna, B. (2007). Visual category-selectivity for faces, places and objects emerges along different developmental trajectories. Developmental Science, 10(4), F15–F30.

    Article  PubMed  Google Scholar 

  • Scherf, K. S., Luna, B., Avidan, G., & Behrmann, M. (2011). “What” precedes “which”: Developmental neural tuning in face- and place-related cortex. Cerebral Cortex, 21(9), 1963–1980.

    Article  PubMed Central  PubMed  Google Scholar 

  • Scherf, K. S., Luna, B., Minshew, N., & Behrmann, M. (2010). Location, location, location: Alterations in the functional topography of face-but not object-or place-related cortex in adolescents with autism. Frontiers in Human Neuroscience, 4, 26.

    PubMed Central  PubMed  Google Scholar 

  • Schultz, R. T. (2005). Developmental deficits in social perception in autism: The role of the amygdala and fusiform face area. International Journal of Developmental Neuroscience, 23, 125–141.

    Article  PubMed  Google Scholar 

  • Schultz, R. T., et al. (2000). Abnormal ventral temporal cortical activity during face discrimination among individuals with autism and Asperger syndrome. Archives of General Psychiatry, 57, 331–340.

    Article  PubMed  Google Scholar 

  • Simmons, W. K., Bellgowan, P. S., & Martin, A. (2007). Measuring selectivity in fMRI data. Nature Neuroscience, 10(1), 4–5.

    Article  PubMed  Google Scholar 

  • Spencer, M. D., Holt, R. J., Chura, L. R., Calder, A. J., Suckling, J., Bullmore, E. T., et al. (2012). Atypical activation during the embedded figures task as a functional magnetic resonance imaging endophenotype of autism. Brain: A Journal of Neurology, 135(Pt 11), 3469–3480.

    Article  Google Scholar 

  • Spencer, M. D., Holt, R. J., Chura, L. R., Suckling, J., Calder, A. J., Bullmore, E. T., et al. (2011). A novel functional brain imaging endophenotype of autism: The neural response to facial expression of emotion. Translational psychiatry, 1, e19.

    Article  PubMed Central  PubMed  Google Scholar 

  • Swartz, J. R., Wiggins, J. L., Carrasco, M., Lord, C., & Monk, C. S. (2013). Amygdala habituation and prefrontal functional connectivity in youth with autism spectrum disorders. Journal of the American Academy of Child and Adolescent Psychiatry, 52(1), 84–93.

    Article  PubMed Central  PubMed  Google Scholar 

  • Todd, R. M., Evans, J. W., Morris, D., Lewis, M. D., & Taylor, M. J. (2011). The changing face of emotion: Age-related patterns of amygdala activation to salient faces. Social Cognitive and Affective Neuroscience, 6(1), 12–23.

    Article  PubMed Central  PubMed  Google Scholar 

  • Tottenham, N., Hertzig, M. E., Gillespie-Lynch, K., Gilhooly, T., Millner, A. J., & Casey, B. J. (2014). Elevated amygdala response to faces and gaze aversion in autism spectrum disorder. Social Cognitive and Affective Neuroscience, 9(1), 106–117.

    Article  PubMed Central  PubMed  Google Scholar 

  • Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., et al. (2002). Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage, 15(1), 273–289.

    Article  PubMed  Google Scholar 

  • Uddin, L. Q., Davies, M. S., Scott, A. A., Zaidel, E., Bookheimer, S. Y., Iacoboni, M., et al. (2008). Neural basis of self and other representation in autism: An FMRI study of self-face recognition. PLoS ONE, 3(10), e3526.

    Article  PubMed Central  PubMed  Google Scholar 

  • Vasa, R. A., Pine, D. S., Thorn, J. M., Nelson, T. E., Spinelli, S., Nelson, E., et al. (2011). Enhanced right amygdala activity in adolescents during encoding of positively valenced pictures. Developmental Cognitive Neuroscience, 1(1), 88–99.

    Article  PubMed Central  PubMed  Google Scholar 

  • von dem Hagen, E. A., Stoyanova, R. S., Rowe, J. B., Baron-Cohen, S., & Calder, A. J. (2014). Direct gaze elicits atypical activation of the theory-of-mind network in autism spectrum conditions. Cerebral Cortex, 24(6), 1485–1492.

  • Wechsler, D. (2003). Wechsler Intelligence Scale for children (4th ed.). San Antonio, TX: Harcourt Assessment Inc.

    Google Scholar 

  • Weigelt, S., Koldewyn, K., & Kanwisher, N. (2012). Face identity recognition in autism spectrum disorders: A review of behavioral studies. Neuroscience and Biobehavioral Reviews, 36(3), 1060–1084.

    Article  PubMed  Google Scholar 

  • Weng, S. J., Carrasco, M., Swartz, J. R., Wiggins, J. L., Kurapati, N., Liberzon, I., et al. (2011). Neural activation to emotional faces in adolescents with autism spectrum disorders. Journal of Child Psychology and Psychiatry and Allied Disciplines, 52(3), 296–305.

    Article  Google Scholar 

  • Zurcher, N. R., Donnelly, N., Rogier, O., Russo, B., Hippolyte, L., Hadwin, J., et al. (2013). It’s all in the eyes: Subcortical and cortical activation during grotesqueness perception in autism. PLoS ONE, 8(1), e54313.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This research was sponsored by Autism Speaks and the National Institutes of Health (R01 HD052724, R01 HD042452). We thank Christine Corbly, Myra Huffman and Melissa Wheatley for assistance with data collection and Michelle DiBartolo for help with manuscript preparation.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics statement

All procedures were approved by the university’s Institutional Review Board and have been performed in accordance with the ethical standards established in the 1964 Declaration of Helsinki and its later amendments. All persons gave informed consent or assent prior to inclusion in the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jane E. Joseph.

Appendix

Appendix

The Face > Texture contrast was used to isolate regions of interest (ROIs) in the present study, but this contrast may be biased to detect face preferential responses, thereby raising concerns about the independence of ROI definition and hypothesis testing. To address this concern, we also ran a (Face + Object)/2 > Texture contrast and applied the same uncorrected threshold (z > 2.81) that was used to create ROIs from the Face > Texture contrast. As shown in Fig. 5, this contrast yielded 2 large occipito-temporal clusters that survive an extent threshold of 43 voxels. Forty-three voxels was used as a minimal extent threshold given that spatial smoothing used a 7-mm FWHM Gaussian kernel. Therefore, the resolvable element size was 343 μL. During spatial normalization the data were resampled to 2 mm3 or 8 μL; therefore, 43 voxels in MNI space = 344 μL, which matches the minimum resolvable element.

Fig. 5
figure 5

Comparison of two approaches used to define ROIs. The approach on the left was used for the main analysis and the approach on the right is an alternative approach that was explored. a Face > Texture contrast at uncorrected, z > 2.81 (redyellow). The right occipito-temporal activation was masked by the AAL atlas to yield the right FFA (blue). b (Face + Object)/2 > Texture contrast at uncorrected, z > 2.81. This activation map was further masked by the AAL atlas to yield FFA regions (yellow) and OFA regions (green) (Color figure online)

These two large clusters were further broken down into FFA and OFA components using AAL atlas regions as masks (as we did for the ROIs from the Face > Texture contrast). The resulting ROIs are very similar, but not identical to, the FFA and OFA ROIs that we used in the paper. We then examined face-specialization index (FSI) and object-specialization index (OSI) in these 4 new ROIs to see if any of the results differed.

One difference was that SIBs showed a significant FSI (compared to 0) in the new right FFA which was marginally significant before. Another difference was that the comparison of ASD versus TD-A (via nonparametric Median Test) was not significant in the new right FFA. Also, the marginal correlation between age and FSI in the TD-combined group was not significant in the new left FFA. However, the correlation between FSI and age in the right remains significant in the new right FFA as well.

Taken together, different results with the new ROIs apply to those situations where the effects were marginal or not as strong as in some other ROIs. However, the fundamental findings of the present study were not drastically changed by the two approaches to defining ROIs.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joseph, J.E., Zhu, X., Gundran, A. et al. Typical and Atypical Neurodevelopment for Face Specialization: An fMRI Study. J Autism Dev Disord 45, 1725–1741 (2015). https://doi.org/10.1007/s10803-014-2330-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10803-014-2330-4

Keywords

Navigation