Skip to main content

Advertisement

Log in

Associations Between Dopamine D2 Receptor (DRD2) Gene, Maternal Positive Parenting and Trajectories of Depressive Symptoms from Early to Mid-Adolescence

  • Published:
Journal of Abnormal Child Psychology Aims and scope Submit manuscript

Abstract

Using data from the Longitudinal Study of Chinese Children and Adolescents (LSCCA), this study is the first to examine the roles of the dopamine D2 receptor (DRD2) gene polymorphisms (i.e., TaqIA and A241G) and maternal positive parenting at ages 10 and 11 years in the trajectories of depressive symptoms from early to mid-adolescence (ages 11 to 16 years). In a sample of 1090 Chinese adolescents (50% girls), three trajectories of depressive symptoms were identified: (i) low-stable (36.1%), (ii) moderate-increasing (44.5%), and (iii) high-increasing (19.4%). A241G AA homozygotes and youth exposed to lower levels of maternal positive parenting were both at increased odds to follow the high-increasing vs. low-stable trajectory. Moreover, the A241G polymorphism interacted with maternal positive parenting to distinguish the moderate-increasing trajectory from the high-increasing and the low-stable trajectories. For A241G G-allele carriers, but not AA homozygotes, exposure to high quality of maternal parenting decreased the odds to follow the high-increasing vs. moderate-increasing trajectory of depressive symptoms. For AA homozygotes, but not G-allele carriers, high quality of maternal parenting increased the odds to follow the low-stable vs. moderate-increasing trajectory. The DRD2 TaqIA polymorphism had neither a direct nor an interactive effect with maternal positive parenting on trajectory membership. The current findings highlight the importance of investigating gene-by-environment interactions (G × E) in trajectories of depressive symptoms over adolescence, and support a developmental versus static nature of G × E effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. The genetics subsample (N = 1090) did not differ from the full sample (N = 2164) on the vast majority of variables: gender and age of the child, age and educational levels of mother and father, family income, maternal positive parenting and depressive symptoms at ages 12, 13, 14, 15 and 16. Only slightly lower levels of depressive symptoms at age 11 existed in the genetics subsample versus the full sample (p < 0.05, mean difference − 0.34). In order to maintain consistency in sample size throughout the analyses, we chose to restrict all analyses (i.e., analyses about trajectories of depressive symptoms and predictors of trajectories) to the genetics subsample. In a follow-up analysis, we tested the consistency of our findings across the full sample (N = 2164) and genetics subsample (N = 1090). Three main findings are highlighted. First, the three-trajectory model identified in the genetics subsample was confirmed in the full sample: (i) low-stable (40.2%; B intercept = 0.86, SE = 0.11, p < 0.001), (ii) moderate-increasing (40.8%; B intercept  = 1.64, SE = 0.06, p < 0.001; B linear  = 0.12, SE = 0.01, p < 0.001), and (iii) high-increasing (19.0%; B intercept  = 2.56, SE = 0.07, p < 0.001; B linear  = 0.13, SE = 0.03, p < 0.001; B quadratic  = −0.01, SE = 0.01, p < 0.01). The entropy was 0.90, and the mean posterior probabilities of trajectories ranged from 0.95 to 0.96, suggesting good classification precision. Second, we identified no significant differences between the availability of genetic data across the three trajectories (χ2 = 4.81, df = 2, p > 0.05). Third, the pattern of regression findings was replicated when we used the trajectories as identified in the full sample. Specifically, the meta-analytically derived A241G × parenting interactions remained statistically significant (high-increasing vs. moderate-increasing: OR = 1.85, 95% CI [1.22, 2.81], p < 0.01; moderate-increasing vs. low-stable: OR = 0.67, 95% CI [0.49, 0.93], p < 0.05), and they were similar in magnitude to the effects with trajectories obtained in the genetics subsample.

  2. Given no within class variances in the LCGA model, the LCGA is less complex than the GGMM (General Growth Mixture Modeling). The LCGA is more likely to avoid convergence issues and increase overall model stability versus the GGMM (Jung and Wickrama 2008). Therefore, in line with previous research (Dekker et al. 2007; Fanti and Henrich 2010), the LCGA was selected.

  3. Again, mothers of girls had both higher levels of maternal positive parenting than mothers of boys at ages 10 (t (998) = 3.31, p < 0.001) and 11 (t (1051) = 2.10, p < 0.05), which is in accordance with previous research in similar age groups (i.e., 10 and 11 ages) (Oldehinkel et al. 2006).

  4. The multinomial logistic regressions in this study were estimated on assigning classes to their most likely class. This is mainly because the mean posterior probabilities in the three trajectories ranged from 0.96 to 0.98, suggesting very high estimate probabilities for belonging to each class (Brendgen et al. 2005; Castelao and Kröner-Herwig 2013; Mezulis et al. 2014; Stoolmiller et al. 2005).

References

  • Adkins, D. E., Wang, V., & Elder Jr., G. H. (2009). Structure and stress: Trajectories of depressive symptoms across adolescence and young adulthood. Social Forces, 88, 31–60.

    Article  Google Scholar 

  • Allen, J. P., McElhaney, K. B., Land, D. J., Kuperminc, G. P., Moore, C. W., O'Beirne-Kelly, H., & Kilmer, S. L. (2003). A secure base in adolescence: Markers of attachment security in the mother-adolescent relationship. Child Development, 74, 292–307.

    Article  PubMed  PubMed Central  Google Scholar 

  • Angold, A., Costello, E. J., Erkanli, A., & Worthman, C. M. (1999). Pubertal changes in hormone levels and depression in girls. Psychological Medicine, 29, 1043–1053.

    Article  PubMed  Google Scholar 

  • Arinami, T., Gao, M., Hamaguchi, H., & Toru, M. (1997). A functional polymorphism in the promoter region of the dopamine D2 receptor gene is associated with schizophrenia. Human Molecular Genetics, 6, 577–582.

    Article  PubMed  Google Scholar 

  • Aunola, K., & Nurmi, J. E. (2005). The role of parenting styles in children's problem behavior. Child Development, 76, 1144–1159.

    Article  PubMed  Google Scholar 

  • Bakermans-Kranenburg, M. J., & Van IJzendoorn, M. H. (2015). The hidden efficacy of interventions: Gene×environment experiments from a differential susceptibility perspective. Annual Review of Psychology, 66, 381–409.

    Article  PubMed  Google Scholar 

  • Bakermans-Kranenburg, M. J., Van IJzendoorn, M. H., & Juffer, F. (2003). Less is more: Meta-analyses of sensitivity and attachment interventions in early childhood. Psychological Bulletin, 129, 195–215.

    Article  PubMed  Google Scholar 

  • Belsky, J. (1997). Variation in susceptibility to environmental influence: An evolutionary argument. Psychological Inquiry, 8, 182–186.

    Article  Google Scholar 

  • Belsky, J., & Pluess, M. (2013). Genetic moderation of early child-care effects on social functioning across childhood: A developmental analysis. Child Development, 84, 1209–1225.

    Article  PubMed  PubMed Central  Google Scholar 

  • Berry, D., Deater-Deckard, K., McCartney, K., Wang, Z., & Petrill, S. A. (2013). Gene-environment interaction between dopamine receptor D4 7-repeat polymorphism and early maternal sensitivity predicts inattention trajectories across middle childhood. Development and Psychopathology, 25, 291–306.

    Article  PubMed  Google Scholar 

  • Block, J. H. (1981). The child-rearing practices report (CRPR): A set of Q items for the description of parental socialization attitudes and values. Berkeley: University of California, Institute of Human Development.

    Google Scholar 

  • Borenstein, M., Rothstein, D., & Cohen, D. (2005). Comprehensive meta-analysis: A computer program for research synthesis Englewood. NJ: Biostat.

    Google Scholar 

  • Brendgen, M., Wanner, B., Morin, A. J., & Vitaro, F. (2005). Relations with parents and with peers, temperament, and trajectories of depressed mood during early adolescence. Journal of Abnormal Child Psychology, 33, 579–594.

    Article  PubMed  Google Scholar 

  • Cairney, J. (1998). Gender differences in the prevalence of depression among Canadian adolescents. Canadian Journal of Public Health, 89, 181–182.

    PubMed  Google Scholar 

  • Caspi, A., Sugden, K., Moffitt, T. E., Taylor, A., Craig, I. W., Harrington, H., et al. (2003). Influence of life stress on depression: Moderation by a polymorphism in the 5-HTT gene. Science, 301, 386–389.

    Article  PubMed  Google Scholar 

  • Castelao, C. F., & Kröner-Herwig, B. (2013). Different trajectories of depressive symptoms in children and adolescents: Predictors and differences in girls and boys. Journal of Youth and Adolescence, 42, 1169–1182.

    Article  Google Scholar 

  • Chen, X., Rubin, K. H., & Li, B. (1995). Depressed mood in Chinese children: Relations with school performance and family environment. Journal of Consulting and Clinical Psychology, 63, 938–947.

    Article  PubMed  Google Scholar 

  • Chen, X., Hastings, P. D., Rubin, K. H., Chen, H., Cen, G., & Stewart, S. L. (1998). Child-rearing attitudes and behavioral inhibition in Chinese and Canadian toddlers: A cross-cultural study. Developmental Psychology, 34, 677–686.

    Article  PubMed  Google Scholar 

  • Chen, X., Liu, M., & Li, D. (2000a). Parental warmth, control and indulgence and their relations to adjustment in Chinese children: A longitudinal study. Journal of Family Psychology, 14, 401–419.

    Article  PubMed  Google Scholar 

  • Chen, X., Liu, M., Li, B., Cen, G., Chen, H., & Wang, L. (2000b). Maternal authoritative and authoritarian attitudes and mother–child interactions and relationships in urban China. International Journal of Behavioral Development, 24, 119–126.

    Article  Google Scholar 

  • Chen, X., Chen, H., Wang, L., & Liu, M. (2002). Noncompliance and child-rearing attitudes as predictors of aggressive behaviour: A longitudinal study in Chinese children. International Journal of Behavioral Development, 26, 225–233.

    Article  Google Scholar 

  • Chen, X., Chang, L., He, Y., & Liu, H. (2005). The peer group as a context: Moderating effects on relations between maternal parenting and social and school adjustment in Chinese children. Child Development, 76, 417–434.

    Article  PubMed  Google Scholar 

  • Chen, J., Li, X., & McGue, M. (2012). Interacting effect of BDNF Val66Met polymorphism and stressful life events on adolescent depression. Genes, Brain and Behavior, 11, 958–965.

    Google Scholar 

  • Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale: Lawrence Earlbaum Associates.

    Google Scholar 

  • Cohen, M. X., Young, J., Baek, J. M., Kessler, C., & Ranganath, C. (2005). Individual differences in extraversion and dopamine genetics predict neural reward responses. Cognitive Brain Research, 25, 851–861.

    Article  PubMed  Google Scholar 

  • CONVERGE consortium. (2015). Sparse whole-genome sequencing identifies two loci for major depressive disorder. Nature, 523, 588–588.

    Article  PubMed Central  Google Scholar 

  • Dekker, M. C., Ferdinand, R. F., Van Lang, N. D., Bongers, I. L., Van Der Ende, J., & Verhulst, F. C. (2007). Developmental trajectories of depressive symptoms from early childhood to late adolescence: Gender differences and adult outcome. Journal of Child Psychology and Psychiatry, 48, 657–666.

    Article  PubMed  Google Scholar 

  • Duchesne, S., & Ratelle, C. F. (2014). Attachment security to mothers and fathers and the developmental trajectories of depressive symptoms in adolescence: Which parent for which trajectory? Journal of Youth and Adolescence, 43, 641–654.

    Article  PubMed  Google Scholar 

  • Duncan, L. E., & Keller, M. C. (2011). A critical review of the first 10 years of candidate gene-by-environment interaction research in psychiatry. American Journal of Psychiatry, 168, 1041–1049.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ellis, B. J., Boyce, W. T., Belsky, J., Bakermans-Kranenburg, M. J., & Van IJzendoorn, M. H. (2011). Differential susceptibility to the environment: An evolutionary-neurodevelopmental theory. Development and Psychopathology, 23, 7–28.

    Article  PubMed  Google Scholar 

  • Elovainio, M., Jokela, M., Kivimäki, M., Pulkki-Raback, L., Lehtimäki, T., Airla, N., & Keltikangas-Järvinen, L. (2007). Genetic variants in the DRD2 gene moderate the relationship between stressful life events and depressive symptoms in adults: Cardiovascular risk in young Finns study. Psychosomatic Medicine, 69, 391–395.

    Article  PubMed  Google Scholar 

  • Fanti, K. A., & Henrich, C. C. (2010). Trajectories of pure and co-occurring internalizing and externalizing problems from age 2 to age 12: Findings from the National Institute of Child Health and Human Development study of early child care. Developmental Psychology, 46, 1159–1175.

    Article  PubMed  Google Scholar 

  • Forbes, E. E., & Dahl, R. E. (2012). Research review: Altered reward function in adolescent depression: What, when and how? Journal of Child Psychology and Psychiatry, 53, 3–15.

    Article  PubMed  Google Scholar 

  • Gandelman, K. Y., Harmon, S., Todd, R. D., & O'Malley, K. L. (1991). Analysis of the structure and expression of the human dopamine D2A receptor gene. Journal of Neurochemistry, 56, 1024–1029.

    Article  PubMed  Google Scholar 

  • Ge, X., Best, K. M., Conger, R. D., & Simons, R. L. (1996). Parenting behaviors and the occurrence and co-occurrence of adolescent depressive symptoms and conduct problems. Developmental Psychology, 32, 717–731.

    Article  Google Scholar 

  • Ge, X., Natsuaki, M. N., & Conger, R. D. (2006). Trajectories of depressive symptoms and stressful life events among male and female adolescents in divorced and nondivorced families. Development and Psychopathology, 18, 253–273.

    Article  PubMed  Google Scholar 

  • Hayden, E. P., Klein, D. N., Dougherty, L. R., Olino, T. M., Laptook, R. S., Dyson, M. W., et al. (2010). The dopamine D2 receptor gene and depressive and anxious symptoms in childhood: Associations and evidence for gene-environment correlation and gene-environment interaction. Psychiatric Genetics, 20, 304–310.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hung, C. C., Chiou, M. H., Huang, B. H., Hsieh, Y. W., Hsieh, T. J., Huang, C. L., & Lane, H. Y. (2011). Impact of genetic polymorphisms in ABCB1, CYP2B6, OPRM1, ANKK1 and DRD2 genes on methadone therapy in Han Chinese patients. Pharmacogenomics, 12, 1525–1533.

    Article  PubMed  Google Scholar 

  • Johnston, C., Lahey, B. B., & Matthys, W. (2013). Editorial policy for candidate gene studies. Journal of Abnormal Child Psychology, 41, 511–514.

    Article  Google Scholar 

  • Jung, T., & Wickrama, K. A. S. (2008). An introduction to latent class growth analysis and growth mixture modeling. Social and Personality Psychology Compass, 2, 302–317.

    Article  Google Scholar 

  • Kessler, R. C., Avenevoli, S., & Merikangas, K. R. (2001). Mood disorders in children and adolescents: An epidemiologic perspective. Biological Psychiatry, 49, 1002–1014.

    Article  PubMed  Google Scholar 

  • Klein, T. A., Neumann, J., Reuter, M., Hennig, J., Von Cramon, D. Y., & Ullsperger, M. (2007). Genetically determined learning from errors. Science, 318, 1642–1645.

    Article  PubMed  Google Scholar 

  • Kobak, R. R., & Sceery, A. (1988). Attachment in late adolescence: Working models, affect regulation, and representations of self and others. Child Development, 59, 135–146.

    Article  PubMed  Google Scholar 

  • Kovacs, M. (1992). Children's depression inventory (CDI) manual. Toronto: Multi-Health Systems Inc..

    Google Scholar 

  • Krull, K. R., Bhojwani, D., Conklin, H. M., Pei, D., Cheng, C., Reddick, W. E., et al. (2013). Genetic mediators of neurocognitive outcomes in survivors of childhood acute lymphoblastic leukemia. Journal of Clinical Oncology, 31, 2182–2188.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lencz, T., Robinson, D. G., Xu, K., Ekholm, J., Sevy, S., Gunduz-Bruce, H., et al. (2006). DRD2 promoter region variation as a predictor of sustained response to antipsychotic medication in first-episode schizophrenia patients. American Journal of Psychiatry, 163, 529–531.

    Article  PubMed  Google Scholar 

  • Lo, Y., Mendell, N. R., & Rubin, D. B. (2001). Testing the number of components in a normal mixture. Biometrika, 88, 767–778.

    Article  Google Scholar 

  • Mezulis, A., Salk, R. H., Hyde, J. S., Priess-Groben, H. A., & Simonson, J. L. (2014). Affective, biological, and cognitive predictors of depressive symptom trajectories in adolescence. Journal of Abnormal Child Psychology, 42, 539–550.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mills-Koonce, W. R., Propper, C. B., Gariepy, J. L., Blair, C., Garrett-Peters, P., & Cox, M. J. (2007). Bidirectional genetic and environmental influences on mother and child behavior: The family system as the unit of analyses. Development and Psychopathology, 19, 1073–1087.

    Article  PubMed  Google Scholar 

  • Moriam, S., & Sobhani, M. E. (2013). Epigenetic effect of chronic stress on dopamine signaling and depression. Genetics & Epigenetics, 5, 11–16.

    Article  Google Scholar 

  • Musliner, K. L., Munk-Olsen, T., Eaton, W. W., & Zandi, P. P. (2016). Heterogeneity in long-term trajectories of depressive symptoms: Patterns, predictors and outcomes. Journal of Affective Disorders, 192, 199–211.

    Article  PubMed  Google Scholar 

  • Muthén, B., & Muthén, L. K. (2000). Integrating person-centered and variable-centered analyses: Growth mixture modeling with latent trajectory classes. Alcoholism, Clinical and Experimental Research, 24, 882–891.

    Article  PubMed  Google Scholar 

  • Nagin, D. (2005). Group-based modeling of development. Cambridge: Harvard University Press.

    Book  Google Scholar 

  • Nagin, D. S., & Land, K. C. (1993). Age, criminal careers, and population heterogeneity: Specification and estimation of a nonparametric, mixed Poisson model. Criminology, 31, 327–362.

    Article  Google Scholar 

  • Noble, E. P., Blum, K., Ritchie, T., Montgomery, A., & Sheridan, P. J. (1991). Allelic association of the D2 dopamine receptor gene with receptor-binding characteristics in alcoholism or gene ism. Archives of General Psychiatry, 48, 648–654.

    Article  PubMed  Google Scholar 

  • Noble, E. P., Gottschalk, L. A., Fallon, J. H., Ritchie, T. L., & Wu, J. C. (1997). D2 dopamine receptor polymorphism and brain regional glucose metabolism. American Journal of Medical Genetics, 74, 162–166.

    Article  PubMed  Google Scholar 

  • Nyman, E. S., Loukola, A., Varilo, T., Ekelund, J., Veijola, J., Joukamaa, M., et al. (2009). Impact of the dopamine receptor gene family on temperament traits in a population-based birth cohort. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 150, 854–865.

    Article  Google Scholar 

  • Oldehinkel, A. J., Veenstra, R., Ormel, J., De Winter, A. F., & Verhulst, F. C. (2006). Temperament, parenting, and depressive symptoms in a population sample of preadolescents. Journal of Child Psychology and Psychiatry, 47, 684–695.

    Article  PubMed  Google Scholar 

  • Rende, R. D., Plomin, R., Reiss, D., & Hetherington, E. M. (1993). Genetic and environmental influences on depressive symptomatology in adolescence: Individual differences and extreme scores. Journal of Child Psychology and Psychiatry, 34, 1387–1398.

    Article  PubMed  Google Scholar 

  • Reuter, M., Schmitz, A., Corr, P., & Hennig, J. (2006). Molecular genetics support Gray's personality theory: The interaction of COMT and DRD2 polymorphisms predicts the behavioural approach system. The International Journal of Neuropsychopharmacology, 9, 155–166.

    PubMed  Google Scholar 

  • Rosenberg, N. A., Huang, L., Jewett, E. M., Szpiech, Z. A., Jankovic, I., & Boehnke, M. (2010). Genome-wide association studies in diverse populations. Nature Reviews Genetics, 11, 356–366.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sabiston, C. M., O'Loughlin, E., Brunet, J., Chaiton, M., Low, N. C., Barnett, T., & O'Loughlin, J. (2013). Linking depression symptom trajectories in adolescence to physical activity and team sports participation in young adults. Preventive Medicine, 56, 95–98.

    Article  PubMed  Google Scholar 

  • Stoolmiller, M., Kim, H. K., & Capaldi, D. M. (2005). The course of depressive symptoms in men from early adolescence to young adulthood: Identifying latent trajectories and early predictors. Journal of Abnormal Psychology, 114, 331–345.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sulik, M. J., Eisenberg, N., Spinrad, T. L., Lemery-Chalfant, K., Swann, G., Silva, K. M., et al. (2015). Interactions among catechol-O-methyltransferase genotype, parenting, and sex predict children's internalizing symptoms and inhibitory control: Evidence for differential susceptibility. Development and Psychopathology, 27, 709–723.

    Article  PubMed  Google Scholar 

  • Tabachnick, B. G., & Fidell, L. S. (2012). Using multivariate statistics (6th ed.). New York: Harper Collins.

    Google Scholar 

  • Udry, J. R., & Cliquet, R. L. (1982). A cross-cultural examination of the relationship between ages at menarche, marriage, and first birth. Demography, 19, 53–63.

    Article  PubMed  Google Scholar 

  • Vaske, J., Beaver, K. M., Wright, J. P., Boisvert, D., & Makarios, M. (2009a). Moderating effects of DRD2 on depression. Stress and Health, 25, 453–462.

    Article  Google Scholar 

  • Vaske, J., Makarios, M., Boisvert, D., Beaver, K. M., & Wright, J. P. (2009b). The interaction of DRD2 and violent victimization on depression: An analysis by gender and race. Journal of Affective Disorders, 112, 120–125.

    Article  PubMed  Google Scholar 

  • Wang, J., Zhang, H. B., Hu, H. L., Chen, L., Zhang, Z. H., & Yu, F. (2010). Reliability and validity testing on the child depression inventory in Hefei. Modern Preventive Medicine, 37, 1642–1645.

    Google Scholar 

  • Xing, Q., Qian, X., Li, H., Wong, S., Wu, S., Feng, G., et al. (2007). The relationship between the therapeutic response to risperidone and the dopamine D2 receptor polymorphism in Chinese schizophrenia patients. The International Journal of Neuropsychopharmacology, 10, 631–637.

    Article  PubMed  Google Scholar 

  • Xu, F., Zhang, L., Wei, X., Zhang, W., Chen, L., Ji, L., & Chen, X. (2015). The stability of internalizing problem and its relation to maternal parenting during early adolescence. Psychological Development and Education, 31, 204–211.

    Google Scholar 

  • Yap, M. B. H., Pilkington, P. D., Ryan, S. M., & Jorm, A. F. (2014). Parental factors associated with depression and anxiety in young people: A systematic review and meta-analysis. Journal of Affective Disorders, 156, 8–23.

    Article  PubMed  Google Scholar 

  • Zhang, L., Hu, L., Li, X., Zhang, J., & Chen, B. (2014). The DRD2 rs1800497 polymorphism increase the risk of mood disorder: Evidence from an update meta-analysis. Journal of Affective Disorders, 158, 71–77.

    Article  PubMed  Google Scholar 

  • Zhang, W., Cao, Y., Wang, M., Ji, L., Chen, L., & Deater-Deckard, K. (2015). The dopamine D2 receptor polymorphism (DRD2 TaqIA) interacts with maternal parenting in predicting early adolescent depressive symptoms: Evidence of differential susceptibility and age differences. Journal of Youth and Adolescence, 44, 1428–1440.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (31271105 and 31671156) and the Specialized Research Fund for the Doctoral Program of Higher Education (20133704110001) to W. Z. M.J.B.K was supported by the European research Council (ERC AdG), the Gravitation program of the Dutch Ministry of Education, Culture, and Science and the Netherlands Organization for Scientific Research (NWO grant number 024.001.003). We thank the parents and adolescents who generously donated their time to our study, as well as the students who assisted in the data collection. We thank Marinus H. Van IJzendoorn, Leiden University, for his contributions to the data-analysis and his comments to earlier drafts of the paper.

Authors’ Contributions

W.Z., M.J.B.K., C.C., and L. J. conceived the study and its design; C.C., and L. J. participated in the data collection; C.C., J.R., A.v.d.V., and M.J.B.K. participated in the statistical analysis and the interpretation of the data; C.C., J.R., A.v.d.V., and M.J.B.K. drafted the manuscript. All authors read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenxin Zhang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Electronic supplementary material

ESM 1

(DOCX 38.9 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, C., Rijlaarsdam, J., van der Voort, A. et al. Associations Between Dopamine D2 Receptor (DRD2) Gene, Maternal Positive Parenting and Trajectories of Depressive Symptoms from Early to Mid-Adolescence. J Abnorm Child Psychol 46, 365–379 (2018). https://doi.org/10.1007/s10802-017-0294-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10802-017-0294-5

Keywords

Navigation