Skip to main content
Log in

A modified carbon paste electrode based on Fe3O4@multi-walled carbon nanotubes@polyacrylonitrile nanofibers for determination of imatinib anticancer drug

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The increasing application of carbon paste electrode (CPE) in the fabrication of electrochemical sensors has motivated researchers to develop new electrode materials. In the present work, Fe3O4 nanoparticles supported on the multi-walled carbon nanotubes and polyacrylonitrile nanofibers (Fe3O4@MWCNTs@PANNFs) was synthesized via the bulk modification approach to detect imatinib (IMA), as an important anticancer drug. The modified CPE materials were characterized by FESEM, FT-IR, Raman spectroscopy, EDX analysis, XRD, CV, and EIS techniques. The electrocatalytic behavior of IMA at the surface of the modified CPE was studied using a differential pulse voltammetry method. Taking advantages of the electrocatalytic behavior of Fe3O4 nanoparticles and MWCNTs, as well as the large surface area of PANNFs, an applicable-modified CPE was introduced for electrochemical determination of IMA with high sensitivity. The anodic peak currents of IMA increased linearly within the concentration ranges of 0.0017–0.8500 μM, along with detection limits of 0.4 nM. In addition, the oxidation mechanism of IMA was proved by electrochemical simulation. Finally, the Fe3O4@MWCNTs@PANNFs/CPE was employed to the electrochemical determination of IMA in urine samples.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Scheme 2
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Vivanco I, Sawyers CL (2002) The phosphatidylinositol 3-kinase-AKT pathway in humancancer. Nat Rev Cancer 2(7):489–501. https://doi.org/10.1038/nrc839

    Article  CAS  PubMed  Google Scholar 

  2. Demetri GD, Von Mehren M, Blanke CD, Van Den Abbeele AD, Eisenberg B, Roberts PJ, Heinrich MC, Tuveson DA, Singer S, Janicek M, Fletcher JA, Silverman SG, Silberman SL, Capdeville R, Kiese B, Peng B, Dimitrijevic S, Druker BJ, Corless C, Fletcher CDM, Joensuu H (2002) Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors. N Engl J Med 347(7):472–480. https://doi.org/10.1056/NEJMoa020461

    Article  CAS  PubMed  Google Scholar 

  3. Dagher R, Cohen M, Williams G, Rothmann M, Gobburu J, Robbie G, Rahman A, Chen G, Staten A, Griebel D (2002) Approval summary: imatinib mesylate in the treatment of metastatic and/or unresectable malignant gastrointestinal stromal tumors. Clin Cancer Res 8(10):3034–3038

    CAS  PubMed  Google Scholar 

  4. Bende G, Kollipara S, Kolachina V, Saha R (2007) Development and validation of an stability indicating RP-LC method for determination of imatinib mesylate. Chromatographia 66(11–12):859–866

    Article  CAS  Google Scholar 

  5. Fornasaro S, Bonifacio A, Marangon E, Buzzo M, Toffoli G, Rindzevicius T, Schmidt MS, Sergo V (2018) Label-free quantification of anticancer drug imatinib in human plasma with surface enhanced raman spectroscopy. Anal Chem 90(21):12670–12677. https://doi.org/10.1021/acs.analchem.8b02901

    Article  CAS  PubMed  Google Scholar 

  6. Yan Z, Zhang Z, Chen J (2016) Biomass-based carbon dots: synthesis and application in imatinib determination. Sens Actuators B 225:469–473. https://doi.org/10.1016/j.snb.2015.10.107

    Article  CAS  Google Scholar 

  7. Ajimura TO, Borges KB, Ferreira AF, de Castro FA, de Gaitani CM (2011) Capillary electrophoresis method for plasmatic determination of imatinib mesylate in chronic myeloid leukemia patients. Electrophoresis 32(14):1885–1892

    Article  CAS  Google Scholar 

  8. Shao Y, Wang J, Wu H, Liu J, Aksay IA, Lin Y (2010) Graphene based electrochemical sensors and biosensors: a review. Electroanalysis 22(10):1027–1036. https://doi.org/10.1002/elan.200900571

    Article  CAS  Google Scholar 

  9. Alvau MD, Tartaggia S, Meneghello A, Casetta B, Calia G, Serra PA, Polo F, Toffoli G (2018) Enzyme-based electrochemical biosensor for therapeutic drug monitoring of anticancer drug irinotecan. Anal Chem 90(10):6012–6019. https://doi.org/10.1021/acs.analchem.7b04357

    Article  CAS  PubMed  Google Scholar 

  10. Jain R, Sharma R (2012) Novel bismuth/multi-walled carbon nanotubes-based electrochemical sensor for the determination of neuroprotective drug cilostazol. J Appl Electrochem 42(5):341–348

    Article  CAS  Google Scholar 

  11. Abdel Karim SE, El-Nashar RM, Abadi AH (2012) Potentiometric determination of imatinib under batch and flow injection analysis conditions. Int J Electrochem Sci 7(10):9668–9681

    CAS  Google Scholar 

  12. Brycht M, Kaczmarska K, Uslu B, Ozkan SA, Skrzypek S (2016) Sensitive determination of anticancer drug imatinib in spiked human urine samples by differential pulse voltammetry on anodically pretreated boron-doped diamond electrode. Diam Relat Mater 68:13–22. https://doi.org/10.1016/j.diamond.2016.05.007

    Article  CAS  Google Scholar 

  13. Hatamluyi B, Es'haghi Z (2017) A layer-by-layer sensing architecture based on dendrimer and ionic liquid supported reduced graphene oxide for simultaneous hollow-fiber solid phase microextraction and electrochemical determination of anti-cancer drug imatinib in biological samples. J Electroanal Chem 801:439–449. https://doi.org/10.1016/j.jelechem.2017.08.032

    Article  CAS  Google Scholar 

  14. Rodríguez J, Castañeda G, Lizcano I (2018) Electrochemical sensor for leukemia drug imatinib determination in urine by adsorptive striping square wave voltammetry using modified screen-printed electrodes. Electrochim Acta 269:668–675. https://doi.org/10.1016/j.electacta.2018.03.051

    Article  CAS  Google Scholar 

  15. Švancara I, Vytřas K, Kalcher K, Walcarius A, Wang J (2009) Carbon paste electrodes in facts, numbers, and notes: a review on the occasion of the 50-years jubilee of carbon paste in electrochemistry and electroanalysis. Electroanalysis 21(1):7–28. https://doi.org/10.1002/elan.200804340

    Article  CAS  Google Scholar 

  16. Slate AJ, Brownson DA, Dena ASA, Smith GC, Whitehead KA, Banks CE (2018) Exploring the electrochemical performance of graphite and graphene paste electrodes composed of varying lateral flake sizes. Phys Chem Chem Phys 20(30):20010–20022

    Article  CAS  Google Scholar 

  17. Babaei A, Khalilzadeh B, Afrasiabi M (2010) A new sensor for the simultaneous determination of paracetamol and mefenamic acid in a pharmaceutical preparation and biological samples using copper(II) doped zeolite modified carbon paste electrode. J Appl Electrochem 40(8):1537–1543

    Article  CAS  Google Scholar 

  18. Haghshenas E, Madrakian T, Afkhami A (2015) A novel electrochemical sensor based on magneto Au nanoparticles/carbon paste electrode for voltammetric determination of acetaminophen in real samples. Mater Sci Eng C 57:205–214. https://doi.org/10.1016/j.msec.2015.07.054

    Article  CAS  Google Scholar 

  19. Afkhami A, Soltani-Felehgari F, Madrakian T, Ghaedi H (2014) Surface decoration of multi-walled carbon nanotubes modified carbon paste electrode with gold nanoparticles for electro-oxidation and sensitive determination of nitrite. Biosens Bioelectron 51:379–385. https://doi.org/10.1016/j.bios.2013.07.056

    Article  CAS  PubMed  Google Scholar 

  20. Afkhami A, Gomar F, Madrakian T (2016) CoFe2O4 nanoparticles modified carbon paste electrode for simultaneous detection of oxycodone and codeine in human plasma and urine. Sens Actuators B 233:263–271. https://doi.org/10.1016/j.snb.2016.04.067

    Article  CAS  Google Scholar 

  21. Afkhami A, Madrakian T, Sabounchei SJ, Rezaei M, Samiee S, Pourshahbaz M (2012) Construction of a modified carbon paste electrode for the highly selective simultaneous electrochemical determination of trace amounts of mercury(II) and cadmium(II). Sens Actuators B 161(1):542–548. https://doi.org/10.1016/j.snb.2011.10.073

    Article  CAS  Google Scholar 

  22. Afkhami A, Ghaedi H, Madrakian T, Ahmadi M, Mahmood-Kashani H (2013) Fabrication of a new electrochemical sensor based on a new nano-molecularly imprinted polymer for highly selective and sensitive determination of tramadol in human urine samples. Biosens Bioelectron 44(1):34–40. https://doi.org/10.1016/j.bios.2012.11.030

    Article  CAS  PubMed  Google Scholar 

  23. Ghaedi H, Afkhami A, Madrakian T, Soltani-Felehgari F (2016) Construction of novel sensitive electrochemical sensor for electro-oxidation and determination of citalopram based on zinc oxide nanoparticles and multi-walled carbon nanotubes. Mater Sci Eng C 59:847–854. https://doi.org/10.1016/j.msec.2015.10.088

    Article  CAS  Google Scholar 

  24. Motaharian A, Hosseini MRM, Naseri K (2019) Determination of psychotropic drug chlorpromazine using screen printed carbon electrodes modified with novel MIP-MWCNTs nano-composite prepared by suspension polymerization method. Sens Actuators B 288:356–362. https://doi.org/10.1016/j.snb.2019.03.007

    Article  CAS  Google Scholar 

  25. Miodek A, Mejri N, Gomgnimbou M, Sola C, Korri-Youssoufi H (2015) E-DNA sensor of Mycobacterium tuberculosis based on electrochemical assembly of nanomaterials (MWCNTs/PPy/PAMAM). Anal Chem 87(18):9257–9264

    Article  CAS  Google Scholar 

  26. Qu S, Huang F, Yu S, Chen G, Kong J (2008) Magnetic removal of dyes from aqueous solution using multi-walled carbon nanotubes filled with Fe2O3 particles. J Hazard Mater 160(2–3):643–647. https://doi.org/10.1016/j.jhazmat.2008.03.037

    Article  CAS  PubMed  Google Scholar 

  27. Finotelli PV, Morales MA, Rocha-Leão MH, Baggio-Saitovitch EM, Rossi AM (2004) Magnetic studies of iron(III) nanoparticles in alginate polymer for drug delivery applications. Mater Sci Eng C 24(5):625–629. https://doi.org/10.1016/j.msec.2004.08.005

    Article  CAS  Google Scholar 

  28. Ansari S, Masoum S (2018) A multi-walled carbon nanotube-based magnetic molecularly imprinted polymer as a highly selective sorbent for ultrasonic-assisted dispersive solid-phase microextraction of sotalol in biological fluids. Analyst 143(12):2862–2875. https://doi.org/10.1039/c7an02077e

    Article  CAS  PubMed  Google Scholar 

  29. Ahmadi M, Madrakian T, Afkhami A (2016) Solid phase extraction of amoxicillin using dibenzo-18-crown-6 modified magnetic-multiwalled carbon nanotubes prior to its spectrophotometric determination. Talanta 148:122–128

    Article  CAS  Google Scholar 

  30. Teymourian H, Salimi A, Khezrian S (2013) Fe3O4 magnetic nanoparticles/reduced graphene oxide nanosheets as a novel electrochemical and bioeletrochemical sensing platform. Biosens Bioelectron 49:1–8. https://doi.org/10.1016/j.bios.2013.04.034

    Article  CAS  PubMed  Google Scholar 

  31. Chimezie AB, Hajian R, Yusof NA, Woi PM, Shams N (2017) Fabrication of reduced graphene oxide-magnetic nanocomposite (rGO-Fe3O4) as an electrochemical sensor for trace determination of As(III) in water resources. J Electroanal Chem 796:33–42. https://doi.org/10.1016/j.jelechem.2017.04.061

    Article  CAS  Google Scholar 

  32. Dau TNN, Vu VH, Cao TT, Nguyen VC, Ly CT, Tran DL, Pham TTN, Loc NT, Piro B, Vu TT (2019) In-situ electrochemically deposited Fe3O4 nanoparticles onto graphene nanosheets as amperometric amplifier for electrochemical biosensing applications. Sens Actuators B. https://doi.org/10.1016/j.snb.2018.11.152

    Article  Google Scholar 

  33. Baby TT, Ramaprabhu S (2010) SiO2 coated Fe3O4 magnetic nanoparticle dispersed multiwalled carbon nanotubes based amperometric glucose biosensor. Talanta 80(5):2016–2022. https://doi.org/10.1016/j.talanta.2009.11.010

    Article  CAS  PubMed  Google Scholar 

  34. Chauhan N, Pundir CS (2012) An amperometric acetylcholinesterase sensor based on Fe3O4 nanoparticle/multi-walled carbon nanotube-modified ITO-coated glass plate for the detection of pesticides. Electrochim Acta 67:79–86. https://doi.org/10.1016/j.electacta.2012.02.012

    Article  CAS  Google Scholar 

  35. Keypour H, Saremi SG, Veisi H, Noroozi M (2016) Electrochemical determination of citalopram on new Schiff base functionalized magnetic Fe3O4 nanoparticle/MWCNTs modified glassy carbon electrode. J Electroanal Chem 780:160–168. https://doi.org/10.1016/j.jelechem.2016.08.022

    Article  CAS  Google Scholar 

  36. Yang Y, You Y, Liu Y, Yang Z (2013) A lead(II) sensor based on a glassy carbon electrode modified with Fe3O4 nanospheres and carbon nanotubes. Microchim Acta 180(5–6):379–385

    Article  CAS  Google Scholar 

  37. Wu X, Shi ZQ, Wang CY, Jin J (2015) Nanostructured SiO2/C composites prepared via electrospinning and their electrochemical properties for lithium ion batteries. J Electroanal Chem 746:62–67. https://doi.org/10.1016/j.jelechem.2015.03.034

    Article  CAS  Google Scholar 

  38. Werner P, Verdejo R, Wöllecke F, Altstädt V, Sandler JK, Shaffer MS (2005) Carbon nanofibers allow foaming of semicrystalline poly (ether ether ketone). Adv Mater 17(23):2864–2869

    Article  CAS  Google Scholar 

  39. Huang ZM, Zhang YZ, Kotaki M, Ramakrishna S (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 63(15):2223–2253. https://doi.org/10.1016/S0266-3538(03)00178-7

    Article  CAS  Google Scholar 

  40. Feng L, Li S, Li H, Zhai J, Song Y, Jiang L, Zhu D (2002) Super-hydrophobic surface of aligned polyacrylonitrile nanofibers. Angew Chem Int Ed 41(7):1221–1223. https://doi.org/10.1002/1521-3773(20020402)41:7%3c1221:AID-ANIE1221%3e3.0.CO;2-G

    Article  CAS  Google Scholar 

  41. Park J-H, Ju Y-W, Park S-H, Jung H-R, Yang K-S, Lee W-J (2009) Effects of electrospun polyacrylonitrile-based carbon nanofibers as catalyst support in PEMFC. J Appl Electrochem 39(8):1229

    Article  CAS  Google Scholar 

  42. Du P, Song L, Xiong J, Li N, Wang L, Xi Z, Wang N, Gao L, Zhu H (2013) Dye-sensitized solar cells based on anatase TiO2/multi-walled carbon nanotubes composite nanofibers photoanode. Electrochim Acta 87:651–656. https://doi.org/10.1016/j.electacta.2012.09.096

    Article  CAS  Google Scholar 

  43. Ge JJ, Hou H, Li Q, Graham MJ, Greiner A, Reneker DH, Harris FW, Cheng SZ (2004) Assembly of well-aligned multiwalled carbon nanotubes in confined polyacrylonitrile environments: electrospun composite nanofiber sheets. J Am Chem Soc 126(48):15754–15761

    Article  CAS  Google Scholar 

  44. Stanković D, Dimitrijević T, Kuzmanović D, Krstić M, Petković B (2015) Voltammetric determination of an antipsychotic agent trifluoperazine at a boron-doped diamond electrode in human urine. RSC Adv 5(129):107058–107063

    Article  Google Scholar 

  45. Madrakian T, Afkhami A, Ahmadi M, Bagheri H (2011) Removal of some cationic dyes from aqueous solutions using magnetic-modified multi-walled carbon nanotubes. J Hazard Mater 196:109–114

    Article  CAS  Google Scholar 

  46. Tong Y, Lu X, Sun W, Nie G, Yang L, Wang C (2014) Electrospun polyacrylonitrile nanofibers supported Ag/Pd nanoparticles for hydrogen generation from the hydrolysis of ammonia borane. J Power Sources 261:221–226

    Article  CAS  Google Scholar 

  47. Wang S, Wang J, Gao Y (2017) Development and use of an open-source, user-friendly package to simulate voltammetry experiments. ACS Publications, Washington, DC

    Book  Google Scholar 

  48. Mandal M, Kundu S, Ghosh SK, Panigrahi S, Sau TK, Yusuf SM, Pal T (2005) Magnetite nanoparticles with tunable gold or silver shell. J Colloid Interface Sci 286(1):187–194. https://doi.org/10.1016/j.jcis.2005.01.013

    Article  CAS  PubMed  Google Scholar 

  49. Malard L, Pimenta M, Dresselhaus G, Dresselhaus M (2009) Raman spectroscopy in graphene. Phys Rep 473(5–6):51–87

    Article  CAS  Google Scholar 

  50. Hou H, Ge JJ, Zeng J, Li Q, Reneker DH, Greiner A, Cheng SZ (2005) Electrospun polyacrylonitrile nanofibers containing a high concentration of well-aligned multiwall carbon nanotubes. Chem Mater 17(5):967–973

    Article  CAS  Google Scholar 

  51. Cao A, Xu C, Liang J, Wu D, Wei B (2001) X-ray diffraction characterization on the alignment degree of carbon nanotubes. Chem Phys Lett 344(1–2):13–17

    Article  CAS  Google Scholar 

  52. Liu Q, Zhong L-B, Zhao Q-B, Frear C, Zheng Y-M (2015) Synthesis of Fe3O4/polyacrylonitrile composite electrospun nanofiber mat for effective adsorption of tetracycline. ACS Appl Mater Interfaces 7(27):14573–14583

    Article  CAS  Google Scholar 

  53. Bard AJ, Faulkner LR (2001) Fundamentals and applications. Electrochemical. Methods 2:482

    Google Scholar 

  54. Yoo HD, Jang JH, Ryu JH, Park Y, Oh SM (2014) Impedance analysis of porous carbon electrodes to predict rate capability of electric double-layer capacitors. J Power Sources 267:411–420

    Article  CAS  Google Scholar 

  55. Banks CE, Compton RG (2006) New electrodes for old: from carbon nanotubes to edge plane pyrolytic graphite. Analyst 131(1):15–21

    Article  CAS  Google Scholar 

  56. Beitollahi H, Karimi-Maleh H, Khabazzadeh H (2008) Nanomolar and selective determination of epinephrine in the presence of norepinephrine using carbon paste electrode modified with carbon nanotubes and novel 2-(4-oxo-3-phenyl-3, 4-dihydro-quinazolinyl)-N′-phenyl-hydrazinecarbothioamide. Anal Chem 80(24):9848–9851

    Article  CAS  Google Scholar 

  57. Bardea A, Katz E, Willner I (2000) Probing antigen–antibody interactions on electrode supports by the biocatalyzed precipitation of an insoluble product. Electroanalysis 12(14):1097–1106

    Article  CAS  Google Scholar 

  58. Kaushik A, Solanki PR, Kaneto K, Kim C, Ahmad S, Malhotra BD (2010) Nanostructured iron oxide platform for impedimetric cholesterol detection. Electroanalysis 22(10):1045–1055

    Article  CAS  Google Scholar 

  59. Ali MA, Mondal K, Jiao Y, Oren S, Xu Z, Sharma A, Dong L (2016) Microfluidic immuno-biochip for detection of breast cancer biomarkers using hierarchical composite of porous graphene and titanium dioxide nanofibers. ACS Appl Mater Interfaces 8(32):20570–20582

    Article  CAS  Google Scholar 

  60. Diculescu VC, Vivan M, Brett AMO (2006) Voltammetric behavior of antileukemia drug glivec. Part I—electrochemical study of glivec. Electroanalysis 18(18):1800–1807

    Article  CAS  Google Scholar 

  61. Mioduszewska K, Dołżonek J, Wyrzykowski D, Kubik Ł, Wiczling P, Sikorska C, Toński M, Kaczyński Z, Stepnowski P, Białk-Bielińska A (2017) Overview of experimental and computational methods for the determination of the pKa values of 5-fluorouracil, cyclophosphamide, ifosfamide, imatinib and methotrexate. TrAC, Trends Anal Chem 97:283–296

    Article  CAS  Google Scholar 

  62. Ji L, Zhou L, Bai X, Shao Y, Zhao G, Qu Y, Wang C, Li Y (2012) Facile synthesis of multiwall carbon nanotubes/iron oxides for removal of tetrabromobisphenol A and Pb (II). J Mater Chem 22(31):15853–15862

    Article  CAS  Google Scholar 

  63. Laviron E (1979) General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J Electroanal Chem Interfacial Electrochem 101(1):19–28. https://doi.org/10.1016/S0022-0728(79)80075-3

    Article  CAS  Google Scholar 

  64. Özkan SA, Uslu B, Zuman P (2004) Electrochemical oxidation of sildenafil citrate (Viagra) on carbon electrodes. Anal Chim Acta 501(2):227–233. https://doi.org/10.1016/j.aca.2003.09.033

    Article  CAS  Google Scholar 

  65. Uslu B, Dogan B, Özkan SA, Aboul-Enein HY (2005) Electrochemical behavior of vardenafil on glassy carbon electrode: determination in tablets and human serum. Anal Chim Acta 552(1):127–134. https://doi.org/10.1016/j.aca.2005.07.040

    Article  CAS  Google Scholar 

  66. Chen Y, Liu X, Zhang S, Yang L, Liu M, Zhang Y, Yao S (2017) Ultrasensitive and simultaneous detection of hydroquinone, catechol and resorcinol based on the electrochemical co-reduction prepared Au-Pd nanoflower/reduced graphene oxide nanocomposite. Electrochim Acta 231:677–685

    Article  CAS  Google Scholar 

  67. Szczepek WJ, Kosmacińska B, Bielejewska A, Łuniewski W, Skarżyński M, Rozmarynowska D (2007) Identification of imatinib mesylate degradation products obtained under stress conditions. J Pharm Biomed Anal 43(5):1682–1691. https://doi.org/10.1016/j.jpba.2006.12.033

    Article  CAS  PubMed  Google Scholar 

  68. Chen H, Wang X, Chopra S, Adams E, Van Schepdael A (2014) Development and validation of an indirect pulsed electrochemical detection method for monitoring the inhibition of Abl1 tyrosine kinase. J Pharm Biomed Anal 90:52–57

    Article  CAS  Google Scholar 

  69. Zidan DW, Hassan WS, Elmasry MS, Shalaby AA (2018) A novel spectrofluorimetric method for determination of imatinib in pure, pharmaceutical preparation, human plasma, and human urine. Lumin 33(1):232–242. https://doi.org/10.1002/bio.3406

    Article  CAS  Google Scholar 

  70. Zhang C, Huang L, Wu Z, Chang C, Yang Z (2016) Determination of sulfonate ester genotoxic impurities in imatinib mesylate by gas chromatography with mass spectrometry. J Sep Sci 39(18):3558–3563. https://doi.org/10.1002/jssc.201600389

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work has been supported by grants from the Bu-Ali Sina University Research Council and Centre of Excellence in Development of Environmentally Friendly Methods for Chemical Synthesis (CEDEFMCS) which are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tayyebeh Madrakian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (MP4 712 kb)

Supplementary file2 (DOCX 1294 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghapanvari, M., Madrakian, T., Afkhami, A. et al. A modified carbon paste electrode based on Fe3O4@multi-walled carbon nanotubes@polyacrylonitrile nanofibers for determination of imatinib anticancer drug. J Appl Electrochem 50, 281–294 (2020). https://doi.org/10.1007/s10800-019-01388-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-019-01388-x

Keywords

Navigation