Skip to main content

Advertisement

Log in

Correct processing of impedance spectra for lead-acid batteries to parameterize the charge-transfer process

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Electro-chemical impedance spectroscopy is widely used to analyze electro-chemical systems. Most attention is paid to the double-layer capacitance and the charge-transfer resistance as they describe the electro-chemical process on the surface of the electrode. Both values can provide specific information about aging mechanisms, which diminish the surface area. This is of interest when capacity tests are restricted to determine the aging. For lead-acid batteries, for example, this is the case in applications like micro-hybrid vehicles or uninterruptible power supply systems. However, the interpretation of impedance spectra of lead-acid batteries necessitates proper measurements, elaborated verification of measurement validity, and a sufficient model of electro-chemical processes. In this work, impedance spectra, recorded on lead-acid test cells, are processed to identify the ohmic resistance, the double-layer capacitance, and the parameters of the charge-transfer reaction of the negative electrode. This electrode suffers from sulfation, a common aging mechanism in current applications. The aim of the paper is to define a correct processing of impedance spectra for lead-acid batteries, and to depict challenges. Furthermore, possible equivalent electrical circuit models for the negative electrode are evaluated regarding their dependencies on state of charge and current rate. Many of these aspects can be transferred to other electro-chemical systems.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kirchev A et al (2008) Studies of the pulse charge of lead-acid batteries for PV applications: part III. Electrolyte concentration effects on the electrochemical performance of the positive plate. J Power Sources 179(2):808–818

    Article  CAS  Google Scholar 

  2. Kirchev A et al (2009) Studies of the pulse charge of lead-acid batteries for photovoltaic applications part IV. Pulse charge of the negative plate. J Power Sources 191(1):82–90

    Article  CAS  Google Scholar 

  3. Saravanan M, Ganesan M, Ambalavanan S (2014) An in situ generated carbon as integrated conductive additive for hierarchical negative plate of lead-acid battery. J Power Sources 251:20–29

    Article  CAS  Google Scholar 

  4. Gençten M et al (2014) Voltammetric and electrochemical impedimetric behavior of silica-based gel electrolyte for valve-regulated lead-acid battery. J Solid State Electrochem 18(9):2469–2479

    Article  CAS  Google Scholar 

  5. Tong P et al (2015) Characterization of lead(II)-containing activated carbon and its excellent performance of extending lead-acid battery cycle life for high-rate partial-state-of-charge operation. J Power Sources 286:91–102

    Article  CAS  Google Scholar 

  6. Randles JEB (1947) Kinetics of rapid elekctrode reations. Trans Faraday Soc 42:11–19

    Article  Google Scholar 

  7. Macdonald JR (2005) Impedance spectroscopy. Evgenij Barsoukov, 2nd edn. Wiley, Hoboken

    Google Scholar 

  8. Urquidi-Macdonald M (1986) Application of Kramers-Kronig transforms in the analysis of electrochemical impedance data. J Electrochem Soc 133(10):2018

    Article  CAS  Google Scholar 

  9. Schiller CA et al (2001) Validation and evaluation of electrochemical impedance spectra of systems with states that change with time. Phys Chem Chem Phys 3(3):374–378

    Article  CAS  Google Scholar 

  10. Schönleber M, Klotz D, Ivers-Tiffée E (2014) A method for improving the robustness of linear Kramers-Kronig validity tests. Electrochim Acta 131:20–27

    Article  CAS  Google Scholar 

  11. Urquidi-Macdonald M, Real S, Macdonald DD (1990) Applications of Kramers—Kronig transforms in the analysis of electrochemical impedance data—III. Stability and linearity. Electrochim Acta 35(10):1559–1566

    Article  CAS  Google Scholar 

  12. Kiel M, Bohlen O, Sauer DU (2008) Harmonic analysis for identification of nonlinearities in impedance spectroscopy. Electrochim Acta 53(25):7367–7374

    Article  CAS  Google Scholar 

  13. Erdey-Grúz T, Volmer M (1930) Zur Theorie der Wasserstoff Überspannung. Z Phys Chem 150A:1

    Article  Google Scholar 

  14. Blanke H et al (2005) Impedance measurements on lead–acid batteries for state-of-charge, state-of-health and cranking capability prognosis in electric and hybrid electric vehicles. J Power Sources 144(2):418–425

    Article  CAS  Google Scholar 

  15. Nguyen T-T, Tran V-L, Choi W (2014) Development of the intelligent charger with battery state-of-health estimation using online impedance spectroscopy. IEEE, Piscataway, pp 454–458

    Google Scholar 

  16. Salloux K, McHardy J (2007) Eliminating battery failure: two new leading indicators of battery health—a case study. In: Telecommunications energy conference, 2007, INTELEC 2007, 29th International, IEEE, pp 190–193

  17. Pilatowicz G (2014) Comprehensive study of relaxation behaviour of lead-acid batteries for state-of-charge estimation in automotive applications. In: 9th international conference on lead-acid batteries, Bulgaria

  18. Mauracher P, Karden E (1997) Dynamic modelling of lead/acid batteries using impedance spectroscopy for parameter identification. Proc Fifth Eur Lead Battery Conf 67(1–2):69–84

    Google Scholar 

  19. Deperneta D, Ba O, Berthonc A (2012) Online impedance spectroscopy of lead acid batteries for storage management of a standalone power plant. J Power Sources 219:65–74

    Article  CAS  Google Scholar 

  20. Huang W, Qahouq JA (2014) An online battery impedance measurement method using DC–DC power converter control. IEEE Trans Industr Electron 61(11):5987–5995

    Article  Google Scholar 

  21. Thele M et al (2006) Impedance-based overcharging and gassing model for VRLA/AGM batteries. Special issue including selected papers from the 6th International Conference on Lead-Acid Batteries (LABAT 2005, Varna, Bulgaria) and the 11th Asian Battery Conference (11 ABC, Ho Chi Minh City, Vietnam) together with regular papers, Vol. 158, 2, pp. 953–963

  22. Hammouche A et al (2001) On the impedance of the gassing reactions in lead-acid batteries. J Power Sources 96(1):106–112

    Article  CAS  Google Scholar 

  23. Pilatowicz G et al (2012) Simulation of SLI lead-acid batteries for SoC, aging and cranking capability prediction in automotive applications. J Electrochem Soc 159(9):A1410–A1419

    Article  CAS  Google Scholar 

  24. Karden E, Buller S, Doncker R (2000) W. A method for measurement and interpretation of impedance spectra for industrial batteries. J Power Sources 85(1):72–78

    Article  CAS  Google Scholar 

  25. Lam LT et al (2004) Failure mode of valve-regulated lead-acid batteries under high-rate partial-state-of-charge operation. Proc Tenth Asian Battery Conf 133(1):126–134

    CAS  Google Scholar 

  26. Budde-Meiwes H et al (2011) Influence of measurement procedure on quality of impedance spectra on lead–acid batteries. J Power Sources 196(23):10415–10423

    Article  CAS  Google Scholar 

  27. Kowal J (2010) Spatially-resolved impedance of nonlinear inhomogeneous devices. Dissertation, RWTH Aachen University

  28. Lagarias JC et al (1998) Convergence properties of the Nelder–Mead simplex method in low dimensions. SIAM J Optim 9(1):112–147

    Article  Google Scholar 

  29. Jorcin J-B et al (2006) CPE analysis by local electrochemical impedance spectroscopy. Electrochim Acta 51(8–9):1473–1479

    Article  CAS  Google Scholar 

  30. Witzenhausen H (2017) Electrical battery models. RWTH Aachen University, Aachen

    Google Scholar 

  31. Sauer DU (2003) Optimierung des Einsatzes von Blei-Säure-Akkumulatoren in Photovoltaik-Hybrid-Systemen unter spezieller Berücksichtigung der Batteriealterung, Doctoral dissertation, Universität Ulm

  32. Bode H (1977) Lead-acid batteries. Wiley, Hoboken

    Google Scholar 

  33. Newman JS, Thomas-Alyea KE (2004) Electrochemical systems, 3rd edn. Wiley, Hoboken

    Google Scholar 

  34. Archdale G, Harrison JA (1972) The electrochemical dissolution of Pb to form PbSO4 by a solution-precipitation mechanism. J Electroanal Chem Interfacial Electrochem 34(1):21–26

    CAS  Google Scholar 

  35. Grahame DC (1947) The electrical double layer and the theory of electrocapillarity. Chem Rev 41(3):441–501

    Article  CAS  PubMed  Google Scholar 

  36. D’Alkaine CV, Mengarda P, Impinnisi PR (2009) Discharge mechanisms and electrochemical impedance spectroscopy measurements of single negative and positive lead-acid battery plates. J Power Sources 191(1):28–35

    Article  CAS  Google Scholar 

  37. Danel V, Plichon V (1982) Study of Pb(II) in various H2O–H2SO4 mixtures by differential pulse polarography. Electrochim Acta 27(6):771–774

    Article  CAS  Google Scholar 

  38. Piłatowicz G et al (2015) A critical overview of definitions and determination techniques of the internal resistance using lithium-ion, lead-acid, nickel metal-hydride batteries and electrochemical double-layer capacitors as examples. J Power Sources 296:365–376

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The underlying work has been conducted within the project BSMS (EU-1-1-081) funded through the European EFRE program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monika Kwiecien.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kwiecien, M., Huck, M., Badeda, J. et al. Correct processing of impedance spectra for lead-acid batteries to parameterize the charge-transfer process. J Appl Electrochem 48, 885–900 (2018). https://doi.org/10.1007/s10800-018-1217-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-018-1217-z

Keywords

Navigation