Skip to main content
Log in

Numerical investigation of combined chemical and electrochemical processes in Fe2O3 suspension electrolysis

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Suspension electrolysis is a combined process of chemical and electrochemical reactions. The developed model for a parallel-plate electrochemical reactor is based on mixture model for suspension flow and balance equation for diluted species taking into account the dispersed phase content and ions migration due to the electrolyte current and partial dissolution of suspended particles in the suspension electrolysis. Electrochemical reactions are specified through flux boundary conditions at the electrode/electrolyte interface. The influence of the combined processes is reflected through the distribution of ions concentration profile in liquid phase and current density profile at the electrode surface. Numerical investigation indicates that about 90 % of the iron deposition flux is accommodated by an additional component flux due to the chemical reaction of partial dissolution of α-Fe2O3 particles in suspension electrolysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

\(a\) :

Activity (mol l−1)

\(a_{\text{v}}\) :

Interfacial area (m2 m−3)

\(c\) :

Molar concentration (mol m−3)

\(C_{\text{dl}}\) :

Double layer capacitance (F m−2)

\(d_{\text{p}}\) :

Diameter of particle (m)

\(D\) :

Diffusion coefficient (m2 s−1)

\(D_{\text{a}}\) :

Dispersion coefficient (m2 s−1)

\(E_{\text{cell}}\) :

Cell voltage (V)

\(E_{0}\) :

Reversible potential (V)

\(F\) :

Faraday’s constant (96,485 C mol−1)

\(k\) :

Conductivity (Ω−1 m−1)

\(I\) :

Current density (A m−2)

\(I_{0}\) :

Exchange current density (A m−2)

\(N\) :

Molar flow (mol s−1)

\(n_{{e}}\) :

Number of electrons

\(P\) :

Pressure (Pa)

\(R\) :

Ideal gas constant (J mol−1 K−1)

\(R^{\text{cell}}\) :

Ohmic resistance (Ω m2)

r :

Source term (mol m−3 s−1)

\(S\) :

Electrode area (m2)

\(T\) :

Temperature (K)

\({\mathbf{u}}\) :

Velocity vector (m s−1)

\(V\) :

Volume (m3)

\(x\) :

OX co-ordinate

\(y\) :

OY co-ordinate

\(z\) :

OZ co-ordinate

\(\alpha\) :

Dissociation constant

\(\alpha_{\rm{A}}\) :

Anodic charge transfer coefficients

\(\alpha_{\rm {C}}\) :

Cathodic charge transfer coefficients

\(\alpha_{\rm{G}}\) :

Volume fraction of gas phase (m3 m−3)

\(\beta_{\rm{f}}\) :

Mass transfer coefficient (m s−1)

\(\varepsilon_{\rm{d}}\) :

Suspension volume fraction (m3 m−3)

\(\varGamma\) :

Source term (kg m−3 s−1)

\(\nu\) :

Stoichiometry coefficient

\(\eta\) :

Potential difference (V)

\(\rho\) :

Density (kg m−3)

\(\delta_{\rm{E}}\) :

Distance between electrodes (m)

\(\tau\) :

Time (s)

\(\varphi\) :

Potential (V)

A :

Anode electrode

avg:

Averaged

c :

Continuous

C :

Cathode electrode

cell:

Electrochemical reactor

d :

Dispersed

e :

Electrolyte

eff:

Effective

eq:

Equilibrium

in:

Inlet

L :

Liquid

mol:

Molar

ref:

Reference

References

  1. Okada G, Guruswamy V, Bockris JM (1981) J Electrochem Soc 128:2097–2102

    Article  CAS  Google Scholar 

  2. Fourcade F, Tzedakis T (2000) J Electroanal Chem 493:20–27

    Article  CAS  Google Scholar 

  3. Paramguru RK, Küzeci E, Kammel R (1988) Metall Trans B 19:59–65

    Article  Google Scholar 

  4. Allanore A, Lavelaine H, Birat JP, Valentin G, Lapicque F (2010) J Appl Electrochem 40:1957–1966

    Article  CAS  Google Scholar 

  5. Allanore A, Lavelaine H, Valentin G, Birat JP, Lapicque F (2008) J Electrochem Soc 155:E125–E129

    Article  CAS  Google Scholar 

  6. Allanore A, Lavelaine H, Valentin G, Birat JP, Lapicque F (2007) J Electrochem Soc 154:E187–E193

    Article  CAS  Google Scholar 

  7. Wang CY, Gu WB, Liaw BY (1998) J Electrochem Soc 145:3407–3417

    Article  CAS  Google Scholar 

  8. Gu WB, Wang CY (2000) J Electrochem Soc 147:2910–2922

    Article  CAS  Google Scholar 

  9. Newman J, Tiedemann W (1975) AIChE J 21:25–41

    Article  CAS  Google Scholar 

  10. Haussener S, Xiang C, Spurgeon JM, Ardo S, Lewis NS, Weber AZ (2012) Energy Environ Sci 5:9922–9935

    Article  CAS  Google Scholar 

  11. Stefánsson A (2007) Environ Sci Technol 41:6117–6123

    Article  Google Scholar 

  12. Allanore A, Feng J, Lavelaine H, Ogle K (2010) J Electrochem Soc 157:E24–E30

    Article  CAS  Google Scholar 

  13. Bockris JM, Huq AS (1956) Proc R Soc Lond A 237(1209):277–296

    Article  CAS  Google Scholar 

  14. Balej J (1985) Int J Hydrogen Energy 10:365–374

    Article  CAS  Google Scholar 

  15. Hurlen T (1960) Acta Chem Scand 14:1533–1554

    Article  CAS  Google Scholar 

  16. Diakonov II, Schott J, Martin F, Harrichourry JC, Escalier J (1999) Geochim Cosmochim Acta 63:2247–2261

    Article  CAS  Google Scholar 

  17. Blesa MA, Matijević E (1989) Adv Colloid Interface Sci 29:173–221

    Article  CAS  Google Scholar 

  18. Cruz RCD, Reinshagen J, Oberacker R, Segadães AM, Hoffmann MJ (2005) J Colloid Interface Sci 286:579–588

    Article  CAS  Google Scholar 

  19. Kastening B, Boinowitz T, Heins M (1997) J Appl Electrochem 27:147–152

    Article  CAS  Google Scholar 

  20. Newman JS (1973) Electrochemical systems. Prentice-Hall Inc., Englewood Cliffs

    Google Scholar 

  21. Levin AI (1972) Theoretical fundamentals of electrochemistry. Metallurgiya, Moscow

    Google Scholar 

  22. Purday HFP (1949) An introduction to the mechanics of viscous flow; film lubrication, the flow of heat by conduction and heat transfer by convection. Dover Publications, Mineola

    Google Scholar 

  23. St-Pierre J, Piron DL (1986) J Appl Electrochem 16:447–456

    Article  CAS  Google Scholar 

  24. Jupudi R, Zhang H, Zappi G, Bourgeois R (2009) J Comput Multiph Flows 1:341–348

    Article  CAS  Google Scholar 

  25. Danilov VA, Tade MO (2009) Int J Hydrogen Energy 34:8998–9006

    Article  CAS  Google Scholar 

  26. Bozbiyik B, Danilov VA, Denayer JF (2011) Int J Hydrogen Energy 36:14552–14561

    Article  CAS  Google Scholar 

  27. Bansal R (2004) Handbook of engineering electromagnetics. Marcel Dekker, New York

    Book  Google Scholar 

  28. Zemaitis JF, Clark DM, Rafal M, Scrivner NC (2010) Handbook of aqueous electrolyte thermodynamics: Theory & application. Wiley, New York

    Google Scholar 

  29. Bianchi H, Corti HR, Fernandez-Prini R (1994) J Solution Chem 23:1203–1212

    Article  CAS  Google Scholar 

  30. Akselrud GA (1970) Mass exchange in the solid-liquid system (Soviet monograph on mass exchange in solid-liquid system covering soluble material extraction and absorption, interphase mass transfer and dissolving process)

  31. Akselrud GA, Bojko AE, Kashcheev AE (1991) J Eng Phys Thermophys 61:98–102

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Danilov.

Appendices

Appendix 1: Charge balance at the electrode/electrolyte interface

The electric potential fields are governed by the charge conservation equations. The charge balance at interface between electron-conducting and ion conducting media is given by [27]

$$\frac{{\partial Q_{{}} }}{\partial \tau } + \nabla \cdot I_{\text{s}} = \left( {I_{1} - I_{2} } \right)$$
(A.1.1)

where \(I_{1}\) is the current in electron-conducting media normal to the boundary; \(I_{2}\) is the current in ion –conducting media normal to the boundary; \(I_{\text{s}}\) is the superficial current density; and \(Q\) is the charge. The interfaces between ionic and electronic media behave like a capacitor in which the charge density is a function of potential difference across the double layer. Charge or discharge rate at the electrode–electrolyte double layer can be defined as

$$\frac{\partial Q}{\partial \tau } = C_{\text{dl}} \frac{\partial \eta }{\partial t}$$
(A.1.2)

where \(\eta\) is the potential differences, \(\eta = \varphi - \varphi_{m}\). For the potential difference at the electrode/electrolyte interface, the following charge conservation equation is valid

$$C_{\text{dl}} \frac{\partial \eta }{\partial \tau } = - \nabla \cdot I_{\text{s}} + \left( {I_{1} - I_{2} } \right).$$
(A.1.3)

Appendix 2: Auxiliary equations for combined processes

The dissociation reaction of α-Fe2O3 in alkaline solution is given by Diakonov et al. [16]

$$0.5{\text{Fe}}_{2} {\text{O}}_{3} + 2.5{\text{H}}_{2} {\text{O}} = {\text{Fe}}({\text{OH}})_{4} + {\text{H}}^{ + }$$
(A.2.1)

The dissociation constant is defined as

$$K_{\text{s}} = a_{{{\text{Fe(OH)}}_{4}^{ - } }} a_{{{\text{H}}^{ + } }}$$
(A.2.2)

where \(a_{{{\text{Fe(OH)}}_{4}^{ - } }}\) is the activity of \(\rm{Fe(OH)}_{4}^{ - }\) ions and \(a_{{{\text{H}}^{ + } }}\) is the activity of H+ ions. The equilibrium concentration of \(\rm{Fe(OH)}_{4}^{ - }\) ions is a function of H+ ions concentration

$$a_{{{\text{Fe(OH)}}_{4}^{ - } }} = {{K_{\text{s}} } \mathord{\left/ {\vphantom {{K_{\text{s}} } {a_{{{\text{H}}^{ + } }} }}} \right. \kern-0pt} {a_{{{\text{H}}^{ + } }} }}.$$
(A.2.3)

Activity of species is associated with the molar concentration \(a = 0.001\gamma c\), where \(\gamma\) is the activity coefficient. The activity coefficient is calculated using NBS smoothed experimental data [28]. The ionic association in NaOH solution is given by

$$\rm{Na}^{ + } + \rm{OH}^{ - } \leftrightarrow \rm{NaOH}$$
(A.2.4)

The association constant is

$$K_{\text{A}} = \frac{{\left( {1 - \alpha } \right)c^{\text{NaOH}} }}{{\left( {\alpha c^{\text{NaOH}} \gamma^{{{\text{OH}}^{ - } }} } \right)^{2} }}$$
(A.2.5)

where c NaOH is the molar concentration of NaOH solution; \(\alpha\) is degree of dissociation; and \(\gamma^{{{\text{OH}}^{ - } }}\) is activity coefficient of OH ions. The constant of association for 50 % NaOH solution is taken from [29]. The degree of dissociation is found from solving (A.2.5) under the given electrolyte concentration. The inlet concentration of OH and Na+ ions is calculated using the degree of electrolyte dissociation

$$c_{\text{in}}^{{{\text{OH}}^{ - } }} = c^{\text{NaOH}} \cdot \alpha ,\;c_{\text{in}}^{{{\text{Na}}^{ + } }} = c_{\text{in}}^{{{\text{OH}}^{ - } }}.$$
(A.2.6)

The inlet concentration of \(\rm{Fe(OH)}_{4}^{ - }\) ions is set equal to the equilibrium concentration \(c_{\text{in}}^{{{\text{Fe(OH)}}_{4}^{ - } }} = 1000 \cdot a^{{{\text{Fe(OH)}}_{4}^{ - } }}\). The next Nernst equation is valid for equilibrium electrochemical reaction (4)

$$E = E^{0} + \frac{\text{RT}}{zF}\ln \left( {\frac{{a^{{{\text{Fe}}^{ + 3} }} }}{{a^{{{\text{Fe}}^{ + 2} }} }}} \right)$$

or

$$a^{{{\text{Fe}}^{ + 2} }} = a^{{{\text{Fe}}^{ + 3} }} \exp \left( { - \frac{zF}{\text{RT}}\left( {E - E^{0} } \right)} \right).$$
(A.2.7)

Fe(III) ions participate in hydrolysis reactions given by [11, 17]

$$\rm{Fe}^{ + 3} + \rm{H_{2} O} \overset {\it{K}_{\rm{1}} } \longleftrightarrow \rm{Fe(OH)}^{ + 2} + \rm{H}^{ + }$$
$$\rm{Fe}^{ + 3} + 2\rm{H_{2} O} \overset {\it{K}_{\rm{2}} } \longleftrightarrow \rm{Fe(OH)}_{2}^{ + } + 2\rm{H}^{ + }$$
$$\rm{Fe}^{ + 3} + 3\rm{H_{2} O} \overset {\it{K}_{\rm{3}} } \longleftrightarrow \rm{Fe(OH)}_{3} + 3\rm{H}^{ + }$$
$$\rm{Fe}^{ + 3} + 4\rm{H_{2} O} \overset {\it{K}_{\rm{4}} } \longleftrightarrow \rm{Fe(OH)}_{4}^{ - } + 4\rm{H}^{ + }$$
$$\rm{Fe(OH)}^{ + 2} + \rm{H_{2} O} \overset {\it{K}_{\rm{5}} } \longleftrightarrow \rm{Fe(OH)}_{2}^{ + } + \rm{H}^{ + }$$
$$2\rm{Fe}^{ + 3} + 2\rm{H_{2} O}\overset {\it{K}_{\rm{6}} } \longleftrightarrow \rm{Fe_{2} (OH)}_{2}^{ + 4} + 2\rm{H}^{ + }.$$

The hydrolysis constants are defined as follows:

$$K_{1} = \frac{{a^{{{\text{Fe}}^{ + 3} }} }}{{a^{{{\text{Fe(OH)}}^{ + 2} }} a^{{{\text{H}}^{ + } }} }},\;K_{2} = \frac{{a^{{{\text{Fe}}^{ + 3} }} }}{{a^{{{\text{Fe(OH)}}_{2}^{ + } }} (a^{{{\text{H}}^{ + } }} )^{2} }},\;K_{5} = \frac{{a^{{{\text{Fe(OH)}}^{ + 2} }} }}{{a^{{{\text{Fe(OH)}}_{2}^{ + } }} a^{{{\text{H}}^{ + } }} }}$$
(A.2.8)
$$K_{3} = \frac{{a^{{{\text{Fe}}^{ + 3} }} }}{{a^{{{\text{Fe(OH)}}_{3} }} \left( {a^{{{\text{H}}^{ + } }} } \right)^{3} }},\;K_{4} = \frac{{a^{{{\text{Fe}}^{ + 3} }} }}{{a^{{{\text{Fe(OH)}}_{4}^{ - } }} \left( {a^{{{\text{H}}^{ + } }} } \right)^{4} }}$$
(A.2.9)
$$K_{6} = \frac{{\left( {a^{{{\text{Fe}}^{ + 3} }} } \right)^{2} }}{{a^{{{\text{Fe}}_{ 2} ( {\text{OH)}}_{2}^{ + 4} }} \left( {a^{{{\text{H}}^{ + } }} } \right)^{2} }} .$$
(A.2.10)

Activity of Fe+3 ions can be expressed as follows:

$$a^{{{\text{Fe}}^{ + 3} }} = a^{{{\text{Fe(OH)}}_{4}^{ - } }} K_{4} \left( {a^{{{\text{H}}^{ + } }} } \right)^{4}.$$
(A.2.11)

Taking into account (6), (A.2.11), and (A.2.7), Butler–Volmer equation for the overall cathode electrochemical reaction can be written as

$$I^{\text{Fe}} = I_{0}^{\text{Fe}} \left( {\frac{{c^{{{\text{Fe(OH)}}_{4}^{ - } }} }}{{c_{\text{ref}}^{{{\text{Fe(OH)}}_{4}^{ - } }} }}} \right)^{2} \frac{{c^{{{\text{OH}}^{ - } }} }}{{c_{\text{ref}}^{{{\text{OH}}^{ - } }} }}\left( {\exp \left( {\frac{{\alpha_{\text{A}}^{\text{C}} F}}{\text{RT}}\left( {\eta^{\text{C}} - \eta_{\text{eq}}^{\text{C}} } \right)} \right) - \exp \left( { - \frac{{\alpha_{\text{C}}^{\text{C}} F}}{\text{RT}}\left( {\eta^{\text{C}} - \eta_{\text{eq}}^{\text{C}} } \right)} \right)} \right)$$
(A.2.12)

where \(I_{ 0}^{\text{C}}\) is the cathode exchange current density; \(c_{\text{ref}}^{{{\text{Fe(OH)}}_{4}^{ - } }}\) is the reference concentration of \(\rm{Fe(OH)}_{4}^{ - }\) ions; and \(\eta^{\text{C}}\) is the potential difference at the cathode electrode/electrolyte interface.

Hydrogen dissolved in liquid phase is in equilibrium with hydrogen ions at the cathode electrode surface. The equilibrium concentration of hydrogen ions is calculated using Nernst equation defined for equilibrium electrochemical reaction of hydrogen oxidation

$$c_{\text{eq}}^{{{\text{H}}^{ + } }} = {{1000\;a^{{{\text{H}}^{ + } }} } \mathord{\left/ {\vphantom {{1000\;a^{{{\text{H}}^{ + } }} } {\gamma^{{{\text{H}}^{ + } }} }}} \right. \kern-0pt} {\gamma^{{{\text{H}}^{ + } }} }},\;E = \frac{\text{RT}}{F}\ln \left( {\frac{{a^{{{\text{H}}^{ + } }} }}{{a_{{{\text{H}}_{2} }}^{0.5} }}} \right).$$
(A.2.13)

Gas content in equilibrium gas–liquid mixture can be calculated from equilibrium flash equation

$$\sum\limits_{k = 1}^{n} {\frac{{\left( {K^{(k)} - 1} \right)Z^{(k)} }}{{\left( {K^{(k)} - 1} \right)\left( {1 - \gamma_{\text{G}} } \right) + 1}} = 0}$$
(A.2.14)

where \(\gamma_{\rm{G}}\) is the local splitting factor; \(K^{(k)}\) is the distribution of the each components between the vapor and liquid phases, \(K^{(k)} = {{y^{(k)} } \mathord{\left/ {\vphantom {{y^{(k)} } {x^{(k)} }}} \right. \kern-0pt} {x^{(k)} }}\); and \(Z^{(k)}\) is the mixture concentration. The linkage between molar splitting factor and gas volume fraction is given by

$$\alpha_{\text{G}} = \frac{{\gamma_{\text{G}} \rho_{\text{L,mol}} }}{{\gamma_{\text{G}} \rho_{\text{L,mol}} + \gamma_{\text{L}} \rho_{\text{G,mol}} }}.$$
(A.2.15)

Interfacial area of solid particles in suspension is

$$a_{\text{v}} = \frac{6}{{d_{\text{p}} }}\varepsilon_{\text{d}}.$$
(A.2.16)

For suspended particles in liquid flow, mass transfer coefficient in liquid phase is calculated from an empirical correlation [30, 31]

$${\text{Sh}} = C \cdot ({\text{Sc}} \cdot {\text{Ar}})^{1/3}$$
(A.2.17)

where C is the constant; Sh is the Sherwood number; Sc is the Schmidt number; and Ar is the Archimedes number. The total component balance is written for parallel-plate reactor as follows

$$M_{\text{deposition}}^{\text{Fe}} = M_{\text{transfer}}^{\text{Fe}} + M_{\text{dissolving}}^{\text{Fe}}.$$
(A.2.18)

Component flow due to the diffusion flow of \(\rm{Fe(OH)}_{4}^{ - }\) ions at the cathode electrode is

$$M_{\text{transfer}}^{\text{Fe}} = \int\limits_{S} {\left( { - D_{{{\text{Fe(OH)}}_{4}^{ - } }} \nabla c^{{{\text{Fe(OH)}}_{4}^{ - } }} } \right){\text{d}}S}.$$
(A.2.19)

Component flow due to the iron deposition at the cathode electrode is

$$M_{\text{deposition}}^{\text{Fe}} = \frac{{\nu^{{ ( {\text{Fe)}}}} }}{{n_{e}^{{ ( {\text{Fe)}}}} F}}\left| {I_{\text{avg}}^{\text{C}} } \right| \cdot S_{\text{cell}}.$$
(A.2.20)

The component flow due to dissolving solid particles in suspension electrolysis is

$$M_{\rm{dissolving}}^{\rm{Fe}} = \int\limits_{V} {\beta_{\rm{f,L}} a_{\rm{v}} \left(c_{\rm{eq}}^{{\rm{Fe(OH)}_{4}^{ - } }} - c^{{\rm{Fe(OH)}_{4}^{ - } }} \right)\rm{d}{\it V}}.$$
(A.2.21)

The main conclusion is that the partial dissolution of solid particles compensates the component flow of iron deposition at the cathode electrode

$$S_{\rm{transfer}} + S_{\rm{dissolving}} = 1,$$
(A.2.22)

where S transfer is the contribution of diffusion process, \(S_{\text{transfer}} = {{\left| {M_{\text{transfer}}^{\text{Fe}} } \right|} \mathord{\left/ {\vphantom {{\left| {M_{\text{transfer}}^{\text{Fe}} } \right|} {\left| {M_{\text{deposition}}^{\text{Fe}} } \right|}}} \right. \kern-0pt} {\left| {M_{\text{deposition}}^{\text{Fe}} } \right|}}\) and S dissolving is the contribution of the dissolution process in combined chemical and electrochemical processes, \(S_{\text{dissolving}} = {{\left| {M_{\text{dissolving}}^{\text{Fe}} } \right|} \mathord{\left/ {\vphantom {{\left| {M_{\text{dissolving}}^{\text{Fe}} } \right|} {\left| {M_{\text{deposition}}^{\text{Fe}} } \right|}}} \right. \kern-0pt} {\left| {M_{\text{deposition}}^{\text{Fe}} } \right|}}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Danilov, V.A. Numerical investigation of combined chemical and electrochemical processes in Fe2O3 suspension electrolysis. J Appl Electrochem 46, 85–101 (2016). https://doi.org/10.1007/s10800-015-0901-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-015-0901-5

Keywords

Navigation