Skip to main content
Log in

Laboratory- and technical-scale comparison of chlorate and perchlorate formation during drinking water electrolysis: a field study

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Previous work has shown that even mixed metal oxide (MMO) anodes are able to form chlorate and perchlorate when solutions containing Cl ions are electrolysed in undivided cells. Both chlorate and perchlorate are under suspicion for causing several diseases. For the first time, different research groups systematically studied electrode materials [three MMO anode materials and one boron-doped diamond (BDD) anode material as well as technical cells of four producers] for chlorate and perchlorate formation potential under laboratory- and technical-scale conditions. Natural and artificial water samples were used mostly at room temperature, at current densities between 10 and 571 A m−2, with the highest being for BDD anodes, and focusing on water samples with chloride contents between 20 mg dm−3 (0.56 mmol L−1) and 250 mg L−1 (7.04 mmol L−1). Two model water samples were defined to be used as test standards in the future. Only one MMO material showed chlorate formation in the laboratory experiments, whereas in technical cells, in all four cases, chlorate was detected, but perchlorate was not found on MMO anodes. New introduced criteria allow a better risk quantification. According to these criteria, all three cells with MMO anodes are safe when chlorate is limited in drinking water to be below 0.2 mg dm−3. Taking into consideration the advisory perchlorate concentration level suggested by the U.S.E.P.A., no recommendation can be given for cells with BDD anodes with significant chlorate and perchlorate formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

AOX:

Absorbable organic halogens (mg L−1)

BDD:

Boron doped diamond

DPD:

Diethyl-p-phenylendiamine

CCR:

Chlorate-to-chlorine ratio (mg mg−1 × 1000 or µg mg−1)

c:

Concentration (mg L−1)

diss:

Dissolved

DPD:

Diphenylendiamine

F:

Faraday constant (as mol−1)

FAC:

Free active chlorine (mg L−1)

I:

Current (A)

MMO:

Mixed metal oxide

n.d.:

Not detected

PCR:

Perchlorate-to-chlorine ratio (mg mg−1 × 1000 or µg mg−1)

Q:

Flow rate (m3 h−1)

rec:

Recalculated

Re:

Reynolds number

rpm:

Revolutions per minute

SCP:

Specific charge passed (Ah L−1)

V:

Volume (L)

WHO:

World Health Organization

TOC:

Total organic carbon (mg L−1)

THM:

Trihalogenmethanes (mg L−1)

THM0.5:

THM value measured after 0.5 h (mg L−1)

THM24:

THM value measured after 24 h (mg L−1)

TCR:

THM-to-chlorine ratio (mg mg−1 × 1000 or µg mg−1)

t:

Time (h)

U.S.E.P.A:

United States Environmental Protection Agency

°dH:

Degree of water hardness, still used in Germany (1°dH is equivalent to 0.1783 mM content of alkaline earth metal ions)

References

  1. White GC (1999) Handbook of chlorination and alternative disinfectants, 4th edn. Wiley, New York

    Google Scholar 

  2. Bergmann H (2008) Drinking water disinfection by direct electrolysis: state of the art. In: Proceedings of CHISA 2008 and 8th European symposium on electrochemical engineering, Prague, 24–28 August 2008, pp 30–46, ISBN 978-80-02-02053-0

  3. Martinez-Huitle CA, Brillas E (2008) Elektrochemische Alternativen für die Trinkwasserdesinfektion. Angew Chem 120:2024–2032

    Article  Google Scholar 

  4. Bergmann MEH (2009) Drinking water disinfection by in-line electrolysis-product and inorganic by-product formation. In: Chen G, Comninellis C (eds) Electrochemistry for the environment. Springer, New York, pp 163–205

    Google Scholar 

  5. Bergmann MEH (2014) Electrochemical water disinfection (EWD). In: Kreysa G, Ota KI, Savinell R, Robert F (eds) Encyclopedia of applied electrochemistry. Springer, New York, pp 335–342

    Chapter  Google Scholar 

  6. Kerwick MI, Reddy SM, Chamberlain AHL, Holt DM (2005) Electrochemical disinfection, an environmentally acceptable method of drinking water disinfection? Electrochim Acta 50:5270–5277

    Article  CAS  Google Scholar 

  7. Polcaro AM, Vacca A, Mascia M, Palmas S, Pompei R, Rodiguez Ruiz J (2009) Electrochemical treatment of waters with BDD anodes: kinetics of the reactions involving chlorides. J Appl Electrochem 39:2083–2092

    Article  CAS  Google Scholar 

  8. Jeong J, Kim C, Yoon J (2009) The effect of electrode material on the generation of oxidants and microbial inactivation in the electrochemical disinfection processes. Water Res 43:895–901

    Article  CAS  Google Scholar 

  9. Kraft A, Stadelmann M, Blaschke M, Kreysig D, Sandt B, Schroeder F (1999) Electrochemical water disinfection part I: hypochlorite production from very dilute chloride solutions. J Appl Electrochem 29:859–866

    Article  Google Scholar 

  10. Kraft A, Wuensche M, Stadelmann M, Blaschke M (2003) Electrochemical water disinfection. Recent Res Recent Res Dev Electrochem (India) 6:27–55

    CAS  Google Scholar 

  11. Bergmann H, Iourtchouk T, Schöps K, Bouzek K (2002) New UV irradiation and direct electrolysis-promising methods for water disinfection. Chem Eng J 85:111–117

    Article  CAS  Google Scholar 

  12. Polcaro AM, Vacca A, Mascia M, Palmas S, Pompej R, Laconi S (2007) Characterization of a stirred tank electrochemical cell for water disinfection processes. Electrochim Acta 52:2595–2602

    Article  CAS  Google Scholar 

  13. Palmas S, Polcaro AM, Vacca A, Mascia M, Ferrara F (2007) Influence of the operating conditions on the electrochemical disinfection process of natural waters at BDD electrodes. J Appl Electrochem 37:1357–1365

    Article  CAS  Google Scholar 

  14. Vacca A, Mascia M, Palmas S, Da Pozzo A (2011) Electrochemical treatment of water containing chlorides under non-ideal flow conditions with BDD anodes. J Appl Electrochem 41:1087–1097

    Article  CAS  Google Scholar 

  15. Henquin ER, Colli AN, Bergmann MEH, Bisang JM (2013) Characterization of a bipolar parallel-plate electrochemical reactor for water disinfection using low conductivity drinking water. Chem Eng Process Process Intensific 65:45–52

    Article  CAS  Google Scholar 

  16. Mascia M, Vacca A, Palmas S (2012) Fixed bed reactors with three dimensional electrodes for electrochemical treatment of waters for disinfection. Chem Eng J 211–212:479–487

    Article  Google Scholar 

  17. Verfahren zur Desinfektion von Trinkwasser mit Chlor und Hypochloriten (2008) DVGW Arbeitsblatt 229, DVGW

  18. Bergmann MEH, Koparal AS (2005) The formation of chlorine dioxide in the electrochemical treatment of drinking water for disinfection. Electrochim Acta 50:5218–5228

    Article  CAS  Google Scholar 

  19. Bergman MEH, Rollin J (2007) Product and by-product formation in laboratory studies on disinfection electrolysis of water using boron-doped diamond anodes. Catal Today 124:198–203

    Article  Google Scholar 

  20. Polcaro AM, Vacca A, Mascia M, Ferrara S (2008) Product and by-product formation in electrolysis of dilute chloride solutions. J Appl Electrochem 38:979–984

    Article  CAS  Google Scholar 

  21. Bergmann MEH, Rollin R, Iourtchouk T (2009) The occurrence of perchlorate during drinking water electrolysis using BDD anodes. Electrochim Acta 54:2102–2107

    Article  CAS  Google Scholar 

  22. Sánchez-Carretero A, Sáez C, Cañizares P, Rodrigo MA (2011) Electrochemical production of perchlorates using conductive diamond electrolyses. Chem Eng J 166:710–714

    Article  Google Scholar 

  23. Bergmann MEH, Iourtchouk T, Schmidt W, Nüske G, Fischer M (2011) Perchlorate formation in electrochemical water disinfection. Perchlorates: production, uses and health effects. Nova Science Publishers Inc., New York, pp 111–142

    Google Scholar 

  24. Mascia M, Vacca A, Palmas S (2012) Control of disinfection by-products in drinking water. Chem Eng J 211(212):479–487

    Article  Google Scholar 

  25. Bergmann MEH, Koparal AS, Iourtchouk T (2014) Electrochemical advanced oxidation processes, formation of halogenate and perhalogenate species: a critical review. Crit Rev Environ Sci Technol 44:348–390

    Article  CAS  Google Scholar 

  26. Bergmann MEH, Iourtchouk T, Rollin J (2011) The occurrence of bromate and perbromate on BDD anodes during electrolysis of aqueous systems containing bromide: first systematic experimental studies. J Appl Electrochem 41:1109–1123

    Article  CAS  Google Scholar 

  27. da Silva L, Santana MHP, Boodts JFC (2003) Electrochemistry and green chemical processes: electrochemical ozone production. Quim Nova 26:880–888

    Article  Google Scholar 

  28. Rao BB, Anderson TA, Redder A, Jackson WA (2010) perchlorate formation by ozone oxidation of aqueous chlorine/oxy-chlorine species: role of Cl x O y radicals. Environ Sci Technol 44:2961–2967

    Article  CAS  Google Scholar 

  29. Bergmann H (2009) New results on diamond electrode application for water hygienization (in Germ) In: Jahrbuch Oberflächentechnik, Leuze, Saulgau, pp 317–329

  30. Siddiqui MS (1996) Chlorine-ozone interactions: formation of chlorate. Water Res 30:2160–2179

    Article  CAS  Google Scholar 

  31. Czarnetzki LR, Janssen LJJ (1992) Formation of hypochlorite, chlorate and oxygen during NaCl electrolysis from alkaline solutions at an RuO2/TiO2 anode. J Appl Electrochem 22:315–324

    Article  CAS  Google Scholar 

  32. Azizi O, Hubler DK, Schrader G, Farrell J, Chaplin BP (2011) Mechanism of perchlorate formation on boron-doped diamond film anodes. Environ Sci Technol 24:10582–10590

    Article  Google Scholar 

  33. Hubler DK, Baygents JC, Chaplin BP, Farrell J (2014) Understanding chlorite, chlorate and perchlorate formation when generating hypochlorite using boron doped diamond film electrodes. ECS Trans 58:21–32

    Article  Google Scholar 

  34. German national rules (2013) German drinking water ordinance (TrinkwV), 7 August 2013

  35. Bergmann H, Iourtchouk T, Hartmann J (2014) On the formation of halogenated by-products by applying inline electrolysis (in Germ.) In: Jahrbuch für Oberflächentechnik Bd. 70, Leuze Verlag, Saulgau, pp 167–179

  36. World Health Organisation—WHO (2002) Disinfectants and disinfection by-products-session objectives, world health organization seminar pack for drinking water quality. http://www.who.int/entity/water_sanitation_health/dwq/S04.pdf

Download references

Acknowledgments

The authors wish to thank German DVGW, DBU, UBA Berlin-Marienfelde and the companies Ecotron, Hydrosys, Newtec and RWO for Project support (FKZ W 10/02/08-B and FKZ 25386-23).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. E. Henry Bergmann.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 49 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bergmann, M.E.H., Iourtchouk, T., Schmidt, W. et al. Laboratory- and technical-scale comparison of chlorate and perchlorate formation during drinking water electrolysis: a field study. J Appl Electrochem 45, 765–778 (2015). https://doi.org/10.1007/s10800-015-0826-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-015-0826-z

Keywords

Navigation