Skip to main content
Log in

Electrochemical performance and thermal property of electrospun PPESK/PVDF/PPESK composite separator for lithium-ion battery

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

In this study, PPESK/PVDF/PPESK tri-layer composite separators for lithium-ion batteries were prepared by electrospinning technique. The physical properties, electrochemical performances and thermal properties of composite separators were investigated. Results indicate that PPESK/PVDF/PPESK separator displays good wettability in liquid electrolyte. The electrolyte uptake of PPESK/PVDF/PPESK separator is much higher than that of electrospun PVDF, which leads to higher ionic conductivity of PPESK/PVDF/PPESK separator than PVDF separator. Discharge capacity of the cell assembled with PPESK/PVDF/PPESK separator is increased by 50 % than that with PVDF separator. Initial charge–discharge efficiency and capacity retention property of the cell with PPESK/PVDF/PPESK are better than those with PVDF separator or PPESK separator. In addition, when the mass ratio between PPESK and PVDF resins is increased to 4:3, PPESK/PVDF/PPESK separators show good thermal dimensional stability even thermally treated at 180 °C for 1 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zhang SS (2007) A review on the separators of liquid electrolyte Li-ion batteries. J Power Sources 164:351–364

    Article  CAS  Google Scholar 

  2. Gao K, Hu XG, Dai CS, Yi TF (2006) Crystal structures of electrospun PVDF membranes and its separator application for rechargeable lithium metal cells. Mater Sci Eng B 131:100–105

    Article  CAS  Google Scholar 

  3. Kim JR, Choi SW, Jo SM, Lee WS, Kim BC (2004) Electrospun PVdF-based fibrous polymer electrolytes for lithium ion polymer batteries. Electrochim Acta 50:69–75

    Article  CAS  Google Scholar 

  4. Raghavan P, Manuel J, Zhao XH, Kim DS, Ahn JH, Nah CW (2011) Preparation and electrochemical characterization of gel polymer electrolyte based on electrospun polyacrylonitrile nonwoven membranes for lithium batteries. J Power Sources 196:6742–6749

    Article  CAS  Google Scholar 

  5. Raghavan P, Zhao XH, Shin C, Baek DH, Choi JW, Manuel J, Heo MY, Ahn JH, Nah CW (2010) Preparation and electrochemical characterization of polymer electrolytes based on electrospun poly(vinylidene fluoride-co-hexafluoropropylene)/polyacrylonitrile blend/composite membranes for lithium batteries. J Power Sources 195:6088–6094

    Article  CAS  Google Scholar 

  6. Cho TH, Tanaka M, Onishi H, Kondo Y, Nakamura T, Yamazaki H, Tanase S, Sakai T (2008) Battery performances and thermal stability of polyacrylonitrile nano-fiber-based nonwoven separators for Li-ion battery. J Power Sources 181:155–160

    Article  CAS  Google Scholar 

  7. Bansal D, Meyer B, Salomon M (2008) Gelled membranes for Li and Li-ion batteries prepared by electrospinning. J Power Sources 178:848–851

    Article  CAS  Google Scholar 

  8. Yang CR, Jia ZD, Guan ZC, Wang LM (2009) Polyvinylidene fluoride membrane by novel electrospinning system for separator of Li-ion batteries. J Power Sources 189:716–720

    Article  CAS  Google Scholar 

  9. Xiao QZ, Li ZH, Gao DS, Zhang HL (2009) A novel sandwiched membrane as polymer electrolyte for application in lithium-ion battery. J Membr Sci 326:260–264

    Article  CAS  Google Scholar 

  10. Subramania A, Kalyana Sundaram NT, Sathiya Priya AR, Vijaya Kumar G (2007) Preparation of a novel composite micro-porous polymer electrolyte membrane for high performance Li-ion battery. J Membr Sci 294:8–15

    Article  CAS  Google Scholar 

  11. Raghavan P, Choi JW, Ahn JH, Cheruvally G, Chauhan GS, Ahn HJ, Nah CW (2008) Novel electrospun poly(vinylidene fluoride-co-hexafluoropropylene)–in situ SiO2 composite membrane-based polymer electrolyte for lithium batteries. J Power Sources 184:437–443

    Article  CAS  Google Scholar 

  12. Peter K (2006) Nonwoven support material for improved separators in Li–polymer batteries. J Power Sources 161:1335–1340

    Article  Google Scholar 

  13. Zhang HP, Zhang P, Li ZH, Sun M, Wu YP, Wu HQ (2007) A novel sandwiched membrane as polymer electrolyte for lithium ion battery. Electrochem Commun 9:1700–1703

    Article  CAS  Google Scholar 

  14. Zhu YS, Wang FX, Liu LL, Xiao SY, Chang Z, Wu YP (2013) Composite of a nonwoven fabric with poly(vinylidene fluoride) as a gel membrane of high safety for lithium ion battery. Energ Environ Sci 6:618–624

    Article  CAS  Google Scholar 

  15. Jian XG, Dai Y, He GH, Chen GH (1999) Preparation of UF and NF poly (phthalazine ether sulfone ketone) membranes for high temperature application. J Membr Sci 161:185–191

    Article  CAS  Google Scholar 

  16. Zhang SH, Jian XG, Yang DL, Wang GQ, Wang DS, Wang PL (2004) Preparation of poly(phthalazinone ether sulfone ketone) ultrafiltration membrane. Membr Sci Technol 24:24–27

    Google Scholar 

  17. Zhang SH, Jian XG, Yang DL (2002) Novel polymer materials for high-temperature membranes. Mod Chem Ind 22:203–206

    CAS  Google Scholar 

  18. Qi W, Lu C, Chen P, Cui TF (2010) Influence of collecting velocities on fiber orientation, morphology and tensile properties of electrospun PPESK fabrics. J Appl Polym Sci 118:2236–2243

    CAS  Google Scholar 

  19. Qi W, Lu C, Chen P, Han L, Yu Q, Xu RQ (2012) Electrochemical performance and thermal property of electrospun Poly(phthalazinone ether sulfone ketone) membrane for lithium-ion battery. Mater Lett 66:239–241

    Article  CAS  Google Scholar 

  20. Carlos MC, Maria MS, Lanceros-Méndez S (2013) Battery separators based on vinylidene fluoride (VDF) polymers and copolymers for lithium ion battery applications. RSC Adv. doi:10.1039/C3RA40732B

  21. Costa CM, Sencadas V, Rocha JG, Silva MM, Lanceros-Méndez S (2013) Evaluation of the main processing parameters influencing the performance of poly(vinylidene fluoride–trifluoroethylene) lithium-ion battery separators. J Solid State Electrochem 17:861–870

    Article  CAS  Google Scholar 

  22. Choi SS, Lee YS, Joo CW, Lee SG, Parkc JK, Han KS (2004) Electrospun PVDF nanofiber web as polymer electrolyte or separator. Electrochim Acta 50:339–343

    Article  CAS  Google Scholar 

  23. Gopalan AI, Lee KP, Manesh KM, Santhosh P (2008) Poly(vinylidene fluoride)–polydiphenylamine composite electrospun membrane as high-performance polymer electrolyte for lithium batteries. J Membrane Sci 318:422–428

    Article  CAS  Google Scholar 

  24. Djian D, Alloin F, Martinet S, Lignier H (2009) Macroporous poly(vinylidene fluoride) membrane as a separator for lithium-ion batteries with high charge rate capacity. J Power Sources 187:575–580

    Article  CAS  Google Scholar 

  25. Cui ZY, Xu YY, Zhu LP, Wang JY, Xi ZY, Zhu BK (2008) Preparation of PVDF/PEO-PPO-PEO blend microporous membranes for lithium ion batteries via thermally induced phase separation process. J Membr Sci 325:957–963

    Article  CAS  Google Scholar 

  26. Gopalan AI, Santhosh P, Manesh KM, Nho JH, Kim SH, Hwang CG, Lee KP (2008) Development of electrospun PVdF–PAN membrane-based polymer electrolytes for lithium batteries. J Membr Sci 325:683–690

    Article  CAS  Google Scholar 

  27. Jung HR, Ju DH, Lee WJ (2009) Electrospun hydrophilic fumed silica/polyacrylonitrile nanofiber-based composite electrolyte membranes. Electrochim Acta 54:3630–3637

    Article  CAS  Google Scholar 

  28. Raghavan P, Zhao XH, Manuel J, Chauhan GS, Ahn JH, Ryu HS, Ahn HJ, Kim KW, Nah CW (2010) Electrochemical performance of electrospun poly(vinylidene fluoride-co-hexafluoropropylene)-based nanocomposite polymer electrolytes incorporating ceramic fillers and room temperature ionic liquid. Electrochim Acta 55:1347–1354

    Article  CAS  Google Scholar 

  29. Raghavan P, Zhao XH, Manuel J, Shin C, Heo MY, Ahn JH, Ryu HS, Ahn HJ, Noh JP, Cho GB (2010) Electrochemical studies on polymer electrolytes based on poly(vinylidene fluoride-co-hexafluoropropylene) membranes prepared by electrospinning and phase inversion—A comparative study. Mater Res Bull 45:362–366

    Article  CAS  Google Scholar 

  30. Gupta P, Elkins C, Long TE, Wilkes GL (2005) Electrospinning of linear homopolymers of poly(methyl methacrylate): exploring relationships between fiber formation, viscosity, molecular weight and concentration in a good solvent. Polymer 46:4799–4810

    Article  CAS  Google Scholar 

  31. Wang XF, Zhang K, Zhu MF, Yu H, Zhou Z, Chen YM, Hsiao BS (2008) Continuous polymer nanofiber yarns prepared by self-bundling electrospinning method. Polymer 49:2755–2761

    Article  CAS  Google Scholar 

  32. Lu C, Chen P, Li JF, Zhang YJ (2006) Computer simulation of electrospinning. Part I. Effect of solvent in electrospinning. Polymer 47:915–921

    Article  CAS  Google Scholar 

  33. Ribeiro C, Sencadas V, Ribelles JLG, Lanceros-Méndez S (2010) Influence of processing conditions on polymorphism and nanofiber morphology of electroactive poly(vinylidene fluoride) electrospun membranes. Soft Mater 8:274–287

    Article  CAS  Google Scholar 

  34. Cui WW, Tang DY, Gong ZL (2013) Electrospun poly(vinylidene fluoride)/poly(methyl methacrylate) grafted TiO2 composite nanofibrous membrane as polymer electrolyte for lithium-ion batteries. J Power Sources 223:206–213

    Article  CAS  Google Scholar 

  35. Kim YJ, Ahn CH, Lee MB, Choi MS (2011) Characteristics of electrospun PVDF/SiO2 composite nanofiber membranes as polymer electrolyte. Mater Chem Phys 127:137–142

    Article  CAS  Google Scholar 

  36. Chen XL, Gerasopoulos K, Guo JC, Brown A, Ghodssi R, Culver JN, Wang CS (2011) Potential application of microporous structured poly(vinylidene fluoride-hexafluoropropylene)/poly(ethylene terephthalate) composite nonwoven separators to high-voltage and high-power lithium-ion batteries. Electrochim Acta 56:5201–5204

    Article  Google Scholar 

  37. Sencadas V, Lanceros-Méndez S, Sabater I, Serra R, Andrio Balado A, Gómez Ribelles JL (2012) Relaxation dynamics of poly(vinylidene fluoride) studied by dynamical mechanical measurements and dielectric spectroscopy. Eur Phys J E 35:41

    Article  CAS  Google Scholar 

  38. Caparros C, Lopes CA, Ferdov S, Lanceros-Méndez S (2013) γ-Phase nucleation and electrical response of poly(vinylidene fluoride)/microporous titanosilicates composites. Mater Chem Phys 138:553–558

    Article  CAS  Google Scholar 

  39. Lu M, Cheng H, Yang Y (2008) A comparison of solid electrolyte interphase (SEI) on the artificial graphite anode of the aged and cycled commercial lithium ion cells. Electrochim Acta 53:3539–3546

    Article  CAS  Google Scholar 

  40. Chen WY, Ou ZW, Tang HT, Wang H, Yang YJ (2008) Study of the formation of a solid electrolyte interphase (SEI) in ionically crosslinked polyampholytic gel electrolytes. Electrochim Acta 53:4414–4419

    Article  CAS  Google Scholar 

  41. Verma P, Maire P, Novák P (2010) A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries. Electrochim Acta 55:6332–6341

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This experiment is supported by Natural Science Foundation of Liaoning Province, China (Grant No. 20091060) Aeronautical Sciences Foundation of Liaoning Province, China (Grant No. 2010ZC54006) and Program for Liaoning Excellent Talents in University, China (No. LJQ2012013). The authors would like to acknowledge the valuable help given by the organizations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, C., Qi, W., Li, L. et al. Electrochemical performance and thermal property of electrospun PPESK/PVDF/PPESK composite separator for lithium-ion battery. J Appl Electrochem 43, 711–720 (2013). https://doi.org/10.1007/s10800-013-0561-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-013-0561-2

Keywords

Navigation