Skip to main content

Advertisement

Log in

Electrochemical properties of aluminium anodes for Al/air batteries with aqueous sodium chloride electrolyte

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

In order to develop the new anode materials for Al/air batteries, electrochemical properties of pure aluminium (99.999 %), technical grade aluminium (99.8 %) and the alloys with indium and tin, i.e. Al—0.1 % In, Al—0.2 % Sn and Al—0.1 % In—0.2 % Sn have been investigated in 2 mol dm−3 NaCl solution. The aluminium materials were polarized anodically in the range 20–100 mA cm−2 for a 30 min period. During the anodic polarization variation in potential was recorded as a function of time and the simultaneous hydrogen evolution was measured. The rate of hydrogen evolution reaction was found to increase with increasing anodic polarization which is characteristic of the negative difference effect. The additional information concerning the corrosion behaviour of the tested materials was provided by light microscope imaging. The results show that the examined technical grade aluminium alloys could serve as suitable anodes for Al/air batteries containing sodium chloride electrolyte; with Al–In exhibiting the most remarkable characteristics. The addition of In as alloying component to aluminium reduces electrode polarization, decreases hydrogen evolution rate and increases the anode efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Downing BW (2012) In: Zhang L, Sun X, Liu H, Zhang J, Liu R-S (eds) Electrochemical technologies for energy storage and conversion. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 239–277

    Chapter  Google Scholar 

  2. Macdonald DD, Real S, Urquidi-Macdonald M (1988) J Electrochem Soc 135:2397

    Article  CAS  Google Scholar 

  3. Vargel C (2004) Corrosion of aluminium. Elsevier, Oxford

    Google Scholar 

  4. Li Q, Bjerrum NJ (2002) J Power Sources 110:1

    Article  CAS  Google Scholar 

  5. Despić AR, Dražić DM, Perunović MM, Ciković N (1976) J Appl Electrochem 6:527

    Article  Google Scholar 

  6. Mance A, Cerović D, Mihajlović A (1984) J Appl Electrochem 14:459

    Article  CAS  Google Scholar 

  7. Hori Y, Takao J, Shomon H (1985) Electrochim Acta 30:1121

    Article  CAS  Google Scholar 

  8. Tuck CDS, Hunter JA, Scamans GM (1987) J Electrochem Soc 134:2970

    Article  CAS  Google Scholar 

  9. Real S, Urquidi-Macdonald M, Macdonald DD (1988) J Electrochem Soc 135:1633

    Article  CAS  Google Scholar 

  10. El Shayeb HA, Abd El Wahab FM, Zein El Abedin S (1999) J Appl Electrochem 29:473

    Article  CAS  Google Scholar 

  11. Dražić DM, Popić JP (1999) J Appl Electrochem 29:43

    Article  Google Scholar 

  12. Mathiyarasu J, Nehru LC, Subramanian P, Palaniswamy N, Rengaswamy NS (2001) Anti Corros Methods Mater 48:324

    Article  CAS  Google Scholar 

  13. Zein El Abedin S, Saleh AO (2004) J Appl Electrochem 34:331

    Article  CAS  Google Scholar 

  14. Zein El Abedin S, Endres F (2004) J Appl Electrochem 34:1071

    Article  CAS  Google Scholar 

  15. Nestoridi M, Pletcher D, Wood RJK, Wang S, Jones RL, Stokes KR, Wilcock I (2008) J Power Sources 178:445

    Article  CAS  Google Scholar 

  16. Gudić S, Smoljko I, Kliškić M (2010) J Alloys Compd 505:54

    Article  Google Scholar 

  17. Gudić S, Smoljko I, Kliškić M (2010) Mater Chem Phys 121:561

    Article  Google Scholar 

  18. Zhuk AZ, Sheindlin AE, Kleymenov BV, Shkolnikov EI, Lopatin MY (2006) J Power Sources 157:921

    Article  CAS  Google Scholar 

  19. McCafferty E (2003) Corros Sci 45:302

    Google Scholar 

  20. James WJ (1974) In: Fontana MG, Staehle RW (eds) Advances in corrosion science and technology, vol 4. Plenum Press, New York, p 85

    Chapter  Google Scholar 

  21. Straumanis ME (1961) J Electrochem Soc 108:1087

    Article  CAS  Google Scholar 

  22. Wang HZ, Leung DYC, Leung MKH, Ni M (2009) Renew Sustain Energy Rev 13:845

    Article  CAS  Google Scholar 

  23. Franzoni F, Milani M, Montorsi L, Golovitchev V (2010) Int J Hydrogen Energy 35:1548

    Article  CAS  Google Scholar 

  24. Stevanović RM, Despić AR, Dražić DM (1988) Electrochim Acta 33:397

    Article  Google Scholar 

  25. Despić A, Parkhutik VP (1989) In: White RE, Conwas BE, Bockris JO’M (eds) Modern aspects of electrochemistry. Plenum Press, New York, pp 401–495

    Google Scholar 

  26. Muñoz AG, Saidman SB, Bessone JB (2002) Corros Sci 44:2171

    Article  Google Scholar 

  27. Dražić DM, Zečević SK, Atanasoski RT, Despić AR (1983) Electrochim Acta 28:751

    Article  Google Scholar 

  28. Kaesche H (2003) Corrosion of metals: physicochemical principles and current problems. Springer, Berlin\Heidelberg

    Google Scholar 

  29. John K (2010) In: Schütze M, Wieser D, Bender R (eds) Corrosion resistance of aluminium and aluminium alloys. Wiley-VCH, Weinheim, pp 139–142

    Google Scholar 

  30. Bargeron CB, Benson RC (1980) J Electrochem Soc 127:2528

    Article  CAS  Google Scholar 

  31. Baumgärtner M, Kaesche H (1990) Corros Sci 31:231

    Article  Google Scholar 

  32. Balázs L, Gouyet J-F (1995) Phys A 217:319

    Article  Google Scholar 

  33. Despić AR, Dražić DM, Zečević SK, Atanasoski RT (1981) Electrochim Acta 26:173

    Article  Google Scholar 

  34. Ambat R, Davenport AJ, Scamans GM, Afseth A (2006) Corros Sci 48:3455

    Article  CAS  Google Scholar 

  35. Buchheit RG (1995) J Electrochem Soc 142:3994

    Article  CAS  Google Scholar 

  36. Szklarska-Smialowska Z (1999) Corros Sci 41:1743

    Article  CAS  Google Scholar 

  37. Birbilis N, Buchheit RG (2005) J Electrochem Soc 152:B140

    Article  CAS  Google Scholar 

  38. Carroll WM, Breslin CB (1992) Corros Sci 33:1161

    Article  CAS  Google Scholar 

  39. Gundersen JTB, Aytaç A, Nordlien JH, Nisancioglu K (2004) Corros Sci 46:697

    Article  CAS  Google Scholar 

  40. Graver B, van Helvoort A, Walmsley JC, Nisancioglu K (2006) Mater Sci Forum 519–521:673

    Article  Google Scholar 

  41. Graver B, Pedersen AM, Nisancioglu K (2009) ECS Trans 16:55

    Article  CAS  Google Scholar 

  42. Saidman SB, Bessone JB (1997) Electrochim Acta 42:413

    Article  CAS  Google Scholar 

  43. Trasatti S (1972) J Electroanal Chem 39:163

    Article  CAS  Google Scholar 

  44. Nestoridi M, Pletcher D, Wharton JA, Wood RJ (2009) J Power Sources 193:895

    Article  CAS  Google Scholar 

  45. Birkin PR, Nestoridi M, Pletcher D (2009) Electrochim Acta 54:6668

    Article  CAS  Google Scholar 

  46. Breslin CB, Carroll WM (1993) Corros Sci 34:1099

    Article  CAS  Google Scholar 

  47. Iudice de Souza JP, Vielstich W (2010) Seawater aluminum/air cells. Handbook of fuel cells

  48. Nestoridi M (2009) The study of aluminium anodes for high power density Al-air batteries with brine electrolytes. Dissertation, University of Southampton

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Gudić.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smoljko, I., Gudić, S., Kuzmanić, N. et al. Electrochemical properties of aluminium anodes for Al/air batteries with aqueous sodium chloride electrolyte. J Appl Electrochem 42, 969–977 (2012). https://doi.org/10.1007/s10800-012-0465-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-012-0465-6

Keywords

Navigation