Skip to main content
Log in

Electrode kinetics in non-aqueous vanadium acetylacetonate redox flow batteries

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Three electrode materials (glassy carbon, gold, and platinum) were investigated for application in a non-aqueous single-metal redox flow battery based on vanadium (III) acetylacetonate, supported by tetraethylammonium tetrafluoroborate in acetonitrile. Redox couples associated with the one-electron disproportionation of V(acac)3 were observed in voltammetry for each metal tested. An elementary kinetic model was created and used to determine rates for oxidation or reduction of the vanadium complex. The oxidation rates for V(acac)3 were mass-transfer limited on all electrode materials, suggesting reversible kinetics. For the V(acac)3 reduction reaction, exchange-current densities of 1.3, 3.8, and 8.4 A m−2 were observed on glassy carbon, platinum, and gold electrodes, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. ZBB Energy Corporation (2008) Available via DIALOG. www.zbbenergy.com Cited 15 Dec 2010

  2. Prudent Energy (2009) Available via DIALOG. www.pdenergy.com Cited 15 Dec 2010

  3. Barnartt S, Forejt DA (1964) J Electrochem Soc 111:1201

    Article  CAS  Google Scholar 

  4. Sum E, Rychcik M, Skyllas-Kazacos M (1985) J Power Sources 16:85

    Article  CAS  Google Scholar 

  5. Sum E, Skyllas-Kazacos M (1985) J Power Sources 15:179

    Article  CAS  Google Scholar 

  6. Hagedorn NH, Thaller LH (1981) J Power Sources 8:227

    CAS  Google Scholar 

  7. Remick RJ (1984) US Patent 4485154

  8. Zoski C (2007) Handbook of electrochemistry. Elsevier, Amsterdam

    Google Scholar 

  9. Matsuda Y, Takasu Y, Morita M, Tanaka K, Okada M, Matsumura-Inoue T (1985) Denki Kagaku 53:632

    CAS  Google Scholar 

  10. Matsuda Y, Tanaka K, Okada M, Takasu Y, Morita M, Matsumura-Inoue T (1988) J Appl Electrochem 18:909

    Article  CAS  Google Scholar 

  11. Chakrabarti MH, Dryfe RAW, Roberts EPL (2007) Electrochim Acta 52:2189

    Article  CAS  Google Scholar 

  12. Yamamura T, Shiokawa Y, Yamana H, Moriyama H (2002) Electrochim Acta 48:43

    Article  CAS  Google Scholar 

  13. Liu Q, Shinkle AA, Li Y, Monroe CW, Thompson LT, Sleightholme AES (2010) Electrochem Comm 12:1634

    Article  CAS  Google Scholar 

  14. Sleightholme AES, Shinkle AA, Liu Q, Li Y, Monroe CW, Thompson LT (2011) J Power Sources 196:5742

    Google Scholar 

  15. Liu Q, Sleightholme AES, Shinkle AA, Li Y, Thompson LT (2009) Electrochem Comm 11:2312

    Article  CAS  Google Scholar 

  16. Nawi MA, Riechel TL (1981) Inorg Chem 20:1974

    Article  CAS  Google Scholar 

  17. Kitamura M, Yamashita K, Imai H (1976) Bull Chem Soc Jpn 49:97

    Article  CAS  Google Scholar 

  18. Rychcik M, Skyllas-Kazacos M (1987) J Power Sources 19:45

    Article  CAS  Google Scholar 

  19. Hodes G, Manassen J, Cahen D (1980) J Electrochem Soc 127:544

    Article  CAS  Google Scholar 

  20. Hollax E, Cheng SH (1985) Carbon 23:655

    Article  CAS  Google Scholar 

  21. Lopez-Atalaya M, Codina G, Perez JR, Vazquez JL, Aldaz A, Climent MA (1991) J Power Sources 35:225

    Article  CAS  Google Scholar 

  22. Aoki K, Akimoto KT, Matsuda HJ (1984) Electroanal Chem 171:219

    Article  CAS  Google Scholar 

  23. Baur JE, Wightman MR (1991) J Electroanal Chem 305:73

    Article  CAS  Google Scholar 

  24. Mirkin MV, Bard AJ (1992) Anal Chem 64:2293

    Article  CAS  Google Scholar 

  25. Evans DH, Lehmann MW (1999) Acta Chem Scand 53:765

    Article  CAS  Google Scholar 

  26. Asselt R, Elsevier CJ, Amatore C, Jutand A (1997) Organometallic 16:317

    Article  Google Scholar 

  27. Norton JD, White HS (1992) J Electroanal Chem 325:341

    Article  CAS  Google Scholar 

  28. Bard AJ, Faulkner LR (2001) Electrochemical methods—fundamentals and applications. Wiley, New York

    Google Scholar 

  29. Shinkle AA, Sleightholme AES, Griffith LD, Thompson LT, Monroe CW. J Power Sources Accepted 2010. doi: 10.1016/j.jpowsour.2010.12.096

  30. Nicholson RS, Shain I (1965) Anal Chem 37:1351

    Article  CAS  Google Scholar 

  31. Newman J (1970) J Electrochem Soc 17:198

    Article  Google Scholar 

  32. Marcus RA (1963) J Phys Chem 67:853

    Article  CAS  Google Scholar 

  33. Fisher AC (1996) Electrode Dynamics. Oxford, UK

    Google Scholar 

  34. Newman J, Thomas-Alyea K (2004) Electrochem Syst. Wiley-Interscience, Hoboken

    Google Scholar 

  35. Zhong S, Skyllas-Kazacos M (1992) J Power Sources 39:1

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support from the Advanced Energy for Transportation Technology Program and the Hydrogen Energy Technology Laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles W. Monroe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shinkle, A.A., Sleightholme, A.E.S., Thompson, L.T. et al. Electrode kinetics in non-aqueous vanadium acetylacetonate redox flow batteries. J Appl Electrochem 41, 1191–1199 (2011). https://doi.org/10.1007/s10800-011-0314-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-011-0314-z

Keywords

Navigation