Skip to main content

Advertisement

Log in

Advances in electrochemical Fe(VI) synthesis and analysis

  • Review in Applied Electrochemistry Number 65
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Hexavalent iron species (Fe(VI)) have been known for over a century, and have long-time been investigated as the oxidant for water purification, as the catalysts in organic synthesis and more recently as cathodic charge storage materials. Conventional Fe(VI) syntheses include solution phase oxidation (by hyphchlorite) of Fe(III), and the synthesis of less soluble super-irons by dissolution of FeO4 2−, and precipitation with alternate cations. This paper reviews a new electrochemical Fe(VI) synthesis route including both in situ and ex situ syntheses of Fe(VI) salts. The optimized electrolysis conditions for electrochemical Fe(VI) synthesis are summarized. Direct electrochemical synthesis of Fe(VI) compounds has several advantages of shorter synthesis time, simplicity, reduced costs (no chemical oxidant is required) and providing a possible pathway towards more electro-active and thermal stable Fe(VI) compounds. Fe(VI) analytical methodologies summarized in this paper are a range of electrochemical techniques. Fe(VI) compounds have been explored as energy storage cathode materials in both aqueous and non-aqueous phase in “super-iron” battery configurations. In this paper, electrochemical synthesis of reversible Fe(VI/III) thin film towards a rechargeable super-iron cathode is also summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Carr JD, Kelter PB, Tabatabai A, Splichal D, Erickson J, Mclaughlin CW (1985) In: Jolly RL (ed) Proc. 5th conference of water chlorination. Lewis, Chelsea, p 1285

    Google Scholar 

  2. Sharma VK, Smith JO, Millero FJ (1997) Environ Sci Technol 31:2486

    Article  CAS  Google Scholar 

  3. Licht S, Yu X (2005) Environ Sci Technol 39:8071

    Article  CAS  Google Scholar 

  4. Jiang JQ (2007) J Hazard Mater 146:617

    Article  CAS  Google Scholar 

  5. Jiang J, Wang S, Panagoulopoulos A (2007) Desalination 210:266

    Article  CAS  Google Scholar 

  6. Yngard R, Damrongsiri S, Osathaphan K, Sharma V (2007) Chemosphere 69:729

    Article  CAS  Google Scholar 

  7. Cho M, Lee Y, Choi W, Chung H, Yoon J (2006) Wat Res 40:3580

    Article  CAS  Google Scholar 

  8. Jiang J, Wang S, Panagoulopoulos A (2006) Chemosphere 63:212

    Article  CAS  Google Scholar 

  9. Delaude L, Laszlo P (1996) J Org Chem 61:6360

    Article  CAS  Google Scholar 

  10. Licht S, Wang B, Ghosh S (1999) Science 285:1039

    Article  CAS  Google Scholar 

  11. Licht S, Wang B, Ghosh S, Li J, Naschitz V (1999) Electrochem Comm 1:522

    Article  CAS  Google Scholar 

  12. Licht S, Wang B, Xu G, Li J, Naschitz V (1999) Electrochem Comm 1:527

    Article  CAS  Google Scholar 

  13. Licht S, Wang B, Li J, Ghosh S, Tel-Vered R (2000) Electrochem Comm 2:535

    Article  CAS  Google Scholar 

  14. Licht S, Wang B (2000) Electrochem Solid-State Lett 3:209

    Article  CAS  Google Scholar 

  15. Licht S, Naschitz V, Ghosh S, Lin L, Liu B (2001) Electrochem Comm 3:340

    Article  CAS  Google Scholar 

  16. Licht S, Naschitz V, Ghosh S, Liu B, Halperine N, Halperin L, Rozen D (2001) J Power Sources 99:7

    Article  CAS  Google Scholar 

  17. Licht S, Naschitz V, Lin L, Chen J, Ghosh S, Liu B (2001) J Power Sources 101:167

    Article  CAS  Google Scholar 

  18. Licht S, Ghosh S, Dong Q (2001) J Electrochem Soc 148:A1072

    Article  CAS  Google Scholar 

  19. Licht S, Naschitz V, Ghosh S (2001) Electrochem Solid-State Lett 4:A209

    Article  CAS  Google Scholar 

  20. Licht S, Ghosh S, Naschitz V, Halperin N, Halperin L (2001) J Phys Chem B 105:11933

    Article  CAS  Google Scholar 

  21. Licht S, Ghosh S (2002) J Power Sources 109:465

    Article  CAS  Google Scholar 

  22. Licht S, Naschitz V, Ghosh S (2002) J Phys Chem B 106:5947

    Article  CAS  Google Scholar 

  23. Licht S, Tel-Vered R, Halperin L (2002) Electrochem Comm 4:933

    Article  CAS  Google Scholar 

  24. Licht S, Naschitz V, Wang B (2002) J Power Sources 109:67

    Article  CAS  Google Scholar 

  25. Lee J, Tryk D, Fujishima A, Park S (2002) Chem Comm 5:486

    Article  CAS  Google Scholar 

  26. Yang W, Wang J, Pan T, Xu J, Zhang J, Cao C (2002) Electrochem Comm 4:710

    Article  CAS  Google Scholar 

  27. Yang W, Wang J, Zhang Z, Zhang J, Cao C (2002) Chin Chem Lett 13:761

    CAS  Google Scholar 

  28. Tel-Vered R, Rozen D, Licht S (2003) J Electrochem Soc 150:A1671

    Article  CAS  Google Scholar 

  29. Ghosh S, Wen W, Urian RC, Heath C, Srinivasamurthi V, Reiff W, Mukerjee S, Naschitz V, Licht S (2003) Electrochem Solid-State Lett 6:A260

    Article  CAS  Google Scholar 

  30. De Koninck M, Brousse T, Belanger D (2003) Electrochim Acta 48:1425

    Article  CAS  Google Scholar 

  31. Licht S, Tel-Vered R, Halperin L (2004) J Electrochem Soc 151:A31

    Article  CAS  Google Scholar 

  32. Licht S, Tel-Vered R (2004) Chem Comm 6:628

    Google Scholar 

  33. Licht S, Naschitz V, Rozen D, Halperin N (2004) J Electrochem Soc 151:A1147

    Article  CAS  Google Scholar 

  34. Zhang C, Liu Z, Wu F, Lin L, Qi F (2004) Electrochem Comm 6:1104

    Article  CAS  Google Scholar 

  35. Walz K, Suyama A, Suyama W, Sene J, Zeltner W, Armacanqui E, Roszkowski A, Anderson M (2004) J Power Sources 134:318

    Article  CAS  Google Scholar 

  36. Licht S, Yang L, Wang B (2005) Electrochem Comm 7:931

    CAS  Google Scholar 

  37. Nowik I, Herber RH, Koltypin M, Aurbach D, Licht S (2005) J Phys Chem Solids 66:1307

    Article  CAS  Google Scholar 

  38. Koltypin M, Licht S, Tel-Vered R, Naschitz V, Aurbach D, (2005) J Power Sources 146:723

    Article  CAS  Google Scholar 

  39. Ayers K, White N (2005) J Electrochem Soc 152:A467

    Article  CAS  Google Scholar 

  40. Koltypin M, Licht S, Nowik I, Levi E, Gofer Y, Aurbach D (2006) J Electrochem Soc 153:A32

    Article  CAS  Google Scholar 

  41. Licht S, DeAlwis C (2006) J Phys Chem B 110:12394

    Article  CAS  Google Scholar 

  42. Licht S, Yu X, Zheng D (2006) Chem Comm 41:4341

    Google Scholar 

  43. Walz K, Szczech J, Suyama A, Suyama W, Stoiber L, Zeltner W, Armacanqui E, Anderson M (2006) J Electrochem Soc 153:A1102

    Article  CAS  Google Scholar 

  44. Licht S, Yu X, Qu D (2007) Chem Comm 26:2753

    Google Scholar 

  45. Yu X, Licht S (2007) J Power Sources 171:966

    Article  CAS  Google Scholar 

  46. Yu X, Licht S (2007) J Power Sources 171:1010

    Article  CAS  Google Scholar 

  47. Yu X, Licht S (2007) Electrochim Acta 52:8138

    Article  CAS  Google Scholar 

  48. Yu X, Licht S (2007) J Power Sources 173:1012

    Article  CAS  Google Scholar 

  49. Walz K, Handrick A, Szczech J, Stoiber L, Suyama A, Suyama W, Zeltner W, Johnson C, Anderson M (2007) J Power Sources 167:545

    Article  CAS  Google Scholar 

  50. Xu Z, Wang J, Shao H, Tang Z, Zhang J (2007) Electrochem Comm 9:371

    Article  CAS  Google Scholar 

  51. Bouzek K, Lipovska M, Schmidt M, Rousar I, Wragg A (1998) Electrochim Acta 44:547

    Article  CAS  Google Scholar 

  52. De Koninck M, Belanger D (2003) Electrochim Acta 48:1435

    Article  CAS  Google Scholar 

  53. He W, Wang J, Yang C, Zhang J (2006) Electrochim Acta 51:1967

    Article  CAS  Google Scholar 

  54. Lapicque F, Valentin G (2002) Electrochem Comm 4:764

    Article  CAS  Google Scholar 

  55. He W, Wang J, Shao H, Zhang J Cao C (2005) Electrochem Comm 7:607

    Article  CAS  Google Scholar 

  56. Bouzek K, Rousar I (1997) J Appl Electrochem 27:679

    Article  CAS  Google Scholar 

  57. Bouzek K, Schmidt M, Wragg A (1999) Electrochem Comm 1:370

    Article  CAS  Google Scholar 

  58. Licht S, Manassen J (1987) J Electrochem Soc 134:1064

    Article  CAS  Google Scholar 

  59. Licht S (1985) Anal Chem 57:514

    Article  CAS  Google Scholar 

  60. Licht S (1998) In: Bard AJ, Rubinstein I (eds) Electroanalytical Chemistry, vol 20. Marcel Dekker, NY, p 87

    Google Scholar 

  61. Zou J, Chin D (1988) Electrochim Acta 33:477

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingwen Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, X., Licht, S. Advances in electrochemical Fe(VI) synthesis and analysis. J Appl Electrochem 38, 731–742 (2008). https://doi.org/10.1007/s10800-008-9536-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-008-9536-0

Keywords

Navigation