Skip to main content
Log in

Autonomous Systems for Rescue Missions: Design, Architecture and Configuration Validation

  • Published:
Information Systems Frontiers Aims and scope Submit manuscript

Abstract

In the context of disaster management, the intervention of Autonomous Systems brings many benefits to human rescuers. Autonomous Systems can quickly reach regions that may be inaccessible for humans. In addition, they can perform a rapid mapping of the impacted area and therefore enhancing the human knowledge. However, it is necessary to choose the best Autonomous Systems according to (i) mission environment and (ii) mission objectives. In this article, we describe our work on ArcTurius rover, a wheeled Autonomous System in support to disaster management. We validated its design through simulation and formal verification. A first simulation step occurs during the system definition. This allows to formally verify the design choices. A second type of simulation is performed to check the adequacy of the rover with respect to a specific mission. Thus, an Autonomous System can be adapted prior to a real mission to enhance its level of performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Ackerman, E. (2013). Drone adventures uses UAVs to help make the world a better place. IEEE Spectrum.

  • Apvrille, L. (2008). TTool for DIPLODOCUS: An environment for design space exploration. https://doi.org/10.1145/1416729.1416764.

  • Apvrille, L., Roudier, Y., & Tanzi, T. J. (2015). Autonomous drones for disasters management: Safety and security verifications (pp. 1–2). Las Palmas: 20151st URSI Atlantic Radio Science Conference (URSI AT-RASC).

    Google Scholar 

  • Apvrille, L., Tanzi, T. J., Roudier, Y., Dugelay, J.-L. (2017). Drone humanitaire : Ă©tat de l'art et rĂ©flexions, Revue Française de PhotogrammĂ©trie et de TĂ©lĂ©dĂ©tection, pp. 63–71

  • Burguillos, C., & Deng, H. (2018). Emergency Communications network for disasters management in venezuela. ISPRS - international archives of the photogrammetry. Remote Sensing and Spatial Information Sciences, XLII-3, 93–101. https://doi.org/10.5194/isprs-archives-XLII-3-93-2018.

    Article  Google Scholar 

  • Camara, D. (2014). Cavalry to the Rescue: Drones Fleet to Help Rescuers Operations over Disasters Scenarios. Antibes: IEEE Conference on Antenna Measurements & Applications (CAMA).

    Google Scholar 

  • Chandra, M., & Tanzi, T. J. (2017). Drone-Borne GPR Design: Propagation Issues. JournĂ©es scientifiques de l'URSI-France (JS'17).

  • Dias, J. M. S., Nande, P., Barata, N., & Correia, A. (2004). OGRE - open gestures recognition engine, Proceedings (pp. 33–40). Curitiba: 17th Brazilian symposium on computer graphics and image processing.

    Google Scholar 

  • Gademer, A., Petitpas, B., Beaudoin, L., Tanzi, T. J., Riera, B., & Rudant, J. P. (2010). Using centimetric visible imagery obtained from an UAV quadrotor for classification of ERS images. Bergen: European Space Agency ESA Living Planet Symposium.

    Google Scholar 

  • Genius, D., Li, L., Apvrille, L., & Tanzi, T. (2018). Multi-level Latency Evaluation with an MDE Approach. Funchal: 6th International Conference on Model-Driven Rngineering and Software Development (MODELSWARD 2018). https://doi.org/10.5220/0006535902950302 ⟨hal-01670546âź©.

    Book  Google Scholar 

  • Guha-Sapir, D., Hoyois, P., & Below, R. (2013). Annual disaster statistical review 2012: The number and trends. Brussels: CRED.

    Google Scholar 

  • Hokuyo UTM-30LX Scanning Laser Rangefinder (2020), https://www.hokuyo-aut.jp/search/single.php?serial=169

  • Huang, J., & Lien, Y. (2012). Challenges of emergency communication network for disaster response (pp. 528–532). Singapore: 2012 IEEE International Conference on Communication Systems (ICCS).

    Google Scholar 

  • ITU-R SM. (1754) (n.d.). Measurement techniques of ultra-wideband transmissions, rec. ITU-R SM.1755 characteristics, rec. ITU-R SM.1756 Framework & rec. ITU-R SM.1757 impact of ultra-wideband technology.

  • Kam, H. R., Lee, S.-H., Park, T., & Kim, C.-H. (2015). RViz: a toolkit for real domain data visualization. Telecommunication Systems, 60, 1–9. https://doi.org/10.1007/s11235-015-0034-5.

    Article  Google Scholar 

  • Koenig, N., & Howard, A. (2004). Design and use paradigms for Gazebo, an open-source multi-robot simulator (Vol. 3, pp. 2149–2154). Sendai: 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

    Google Scholar 

  • Lee, S., Har, D., & Kum, D. (2016). Drone-Assisted Disaster Management: Finding Victims via Infrared Camera and Lidar Sensor Fusion (pp. 84–89). Nadi: 3rd Asia-Pacific World Congress on Computer Science and Engineering (APWC on CSE). https://doi.org/10.1109/APWC-on-CSE.2016.025.

    Book  Google Scholar 

  • Lefeuvre, F., & Tanzi, T. (2013). International Union of Radio Science, International Council for Science (ICSU), joint Board of Geospatial Information Societies (jBGIS),” in United Nations office for outer space affairs (OOSA).

  • Li, C., Chen, F., Qi, F., Liu, M., Li, Z., Liang, F., Jing, X., Lu, G., & Wang, J. (2016). Searching for Survivors through Random Human-Body Movement Outdoors by Continuous-Wave Radar Array. PloS one, 11, e0152201. https://doi.org/10.1371/journal.pone.0152201.

    Article  Google Scholar 

  • Ludovic, A., Tanzi, T. J., Roudier, Y., Dugelay, J.-L. (2017). Drone humanitaire : Ă©tat de l'art et rĂ©flexions, Revue Française de PhotogrammĂ©trie et de TĂ©lĂ©dĂ©tection, pp. 63–71, N 213–04-26. 2017. ISSN 1768-9791.

  • Nguyen, T. P. V., et al. (2019). Review-Microwave Radar Sensing Systems for Search and Rescue Purposes. Sensors (Basel, Switzerland), 19(13), 2879–2828. https://doi.org/10.3390/s19132879

    Article  Google Scholar 

  • ODE – Open Dynamics Engine (n.d.), https://www.ode.org/

  • OpenDRI_a (n.d.), Open Data for Resilience Initiative, OpenDRI, https://opendri.org/

  • OpenDRI_b (2019), MACHINE LEARNING for DISASTER RISK MANAGEMENT 2019 https://opendri.org/wp-content/uploads/2019/04/190412_WorldBank_DisasterRiskManagement_Ebook_final.pdf

  • Pedroza, G., Apvrille, L., & Knorreck, D. (2011). AVATAR: A SysML Environment for the Formal Verification of Safety and Security Properties (pp. 1–10). Paris: 2011 11th annual international conference on new Technologies of Distributed Systems.

    Google Scholar 

  • Persico R., & Wiley J. (2014). Introduction to ground penetrating radar: Inverse scattering and data processing. ISBN: 9781118305003.

  • Roudier, Y., & Tanzi, T. J. (2017). A State of the Art of Drone (In)Security. In JournĂ©es scientifiques de l'URSI-France (JS'17).

  • Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R., Ng, A.. (2009). ROS: An open-source robot operating system. ICRA Workshop on Open Source Software. 3.

  • Schweppe, H., Roudier, Y., Weyl, B., Apvrille, L., & Scheuer-Mann, D. (2011). C2X Communication: Securing the Last Meter. San Francisco: The 4th IEEE International Symposium on Wireless Vehicular Communications: WIVEC2011.

    Google Scholar 

  • Sebastien, O., Harivelo, F., & Sebastien, D. (2014). Using general public connected devices for disasters victims location. Beijing: 31th URSI GASS.

    Book  Google Scholar 

  • Servigne, S., Gripay, Y., OzgunPinarer, J. S., Ozgovde, A., & Jay, J. (2016). Heterogeneous Sensor Data Exploration and Sustainable Declarative Monitoring Architecture: Application to Smart Building. Split (Croatie): First International Conference on Smart Data and Smart Cities, 30th UDMS, 9 septembre 2016; 97–104. https://doi.org/10.5194/isprs-annals-IV-4-W1-97-2016

  • Tanzi, T., & Isnard, J. (2015). Introduction to public safety networks Chapter of book, in public safety book volume 1: Overview and Challenges. Published by Wiley-ISTE. 2015.

  • Tanzi, T., & Lefeuvre, F. (2010). Radio sciences and disaster management. C.R. Physique, 11, 114–224.

    Article  Google Scholar 

  • Tanzi, T., & Lefeuvre F. (2011). The Contribution of Radio Sciences to Disaster Management. In International Symposium on Geo-information for disaster management (Gi4DM 2011), Antalya, Turkey.

  • Tanzi, T., & Perrot, P. (2009). TĂ©lĂ©coms pour l’ingĂ©nierie du risque (in French), editions hermès ed. Paris: Collection Technique et Scientifique des TĂ©lĂ©coms.

    Google Scholar 

  • Tanzi, T. J., Roudier, Y., & Apvrille, L. (2015). Towards a new architecture for autonomous data collection. La Grande Motte (Montpellier): ISPRS Geospatial Week 2015: Workshop on civil Unmanned Aerial Vehicles for geospatial data acquisition.

    Book  Google Scholar 

  • Tanzi, T. M. C., Isnard, J., Camara, D., Sebastien, O., & Harivelo, F. (2016). Towards rone Borne Disaster Management. Future Application Scenarios, III-8, 181–189. https://doi.org/10.5194/isprs-annals-III-8-181.

    Article  Google Scholar 

  • TTool (n.d.), https://ttool.telecom-paris.fr/index.html

  • Wilkinson, P., & Cole, D. (2010). The role of the radio sciences in the disaster management. Radio Science Bulletin, 3358, 45–51.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tullio Tanzi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanzi, T., Bertolino, M. Autonomous Systems for Rescue Missions: Design, Architecture and Configuration Validation. Inf Syst Front 23, 1189–1202 (2021). https://doi.org/10.1007/s10796-020-10085-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10796-020-10085-6

Keywords

Navigation