Skip to main content

Advertisement

Log in

Diabetic retinal neurodegeneration as a form of diabetic retinopathy

  • Review
  • Published:
International Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To review the evidence supporting diabetic retinal neurodegeneration (DRN) as a form of diabetic retinopathy.

Method

Review of literature.

Results

DRN is recognized to be a part of retinopathy in patients with diabetes mellitus (DM), in addition to the well-established diabetic retinal vasculopathy (DRV). DRN has been noted in the early stages of DM, before the onset of clinically evident diabetic retinopathy. The occurrence of DRN has been confirmed in animal models of DM, histopathological examination of donor’s eyes from diabetic individuals and assessment of neural structure and function in humans. DRN involves alterations in retinal ganglion cells, photoreceptors, amacrine cells and bipolar cells, and is thought to be driven by glutamate, oxidative stress and dysregulation of neuroprotective factors in the retina. Potential therapeutic options for DRN are under evaluation.

Conclusions

Literature is divided on the temporal relation between DRN and DRV, with evidence of both precedence and simultaneous occurrence. The relationship between DRN and multi-system neuropathy in DM is yet to be evaluated critically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Leasher JL, Bourne RR, Flaxman SR, Jonas JB, Keeffe J, Naidoo K, Pesudovs K, Price H, White RA, Wong TY, Resnikoff S, Taylor HR (2016) Vision Loss Expert Group of the Global Burden of Disease Study. Global estimates on the number of people blind or visually impaired by diabetic retinopathy: a meta-analysis from 1990 to 2010. Diabetes Care 39(9):1643–1649

    Article  PubMed  Google Scholar 

  2. Lee R, Wong TY, Sabanayagam C (2015) Epidemiology of diabetic retinopathy, diabetic macular edema and related vision loss. Eye Vis (Lond) 30(2):17

    Article  Google Scholar 

  3. Cho NH, Shaw JE, Karuranga S, Huang Y, da Rocha Fernandes JD, Ohlrogge AW, Malanda B (2018) IDF diabetes atlas: global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract 138:271–281

    Article  CAS  PubMed  Google Scholar 

  4. Wong TY, Sabanayagam C (2019) The war on diabetic retinopathy: where are we now? Asia Pac J Ophthalmol (Phila) 8(6):448–456

    Article  Google Scholar 

  5. Antonetti DA, Lieth E, Barber AJ, Gardner TW (1999) Molecular mechanisms of vascular permeability in diabetic retinopathy. Semin Ophthalmol 14(4):240–248

    Article  CAS  PubMed  Google Scholar 

  6. Sokol S, Moskowitz A, Skarf B, Evans R, Molitch M, Senior B (1985) Contrast sensitivity in diabetics with and without background retinopathy. Arch Ophthalmol 103(1):51–54

    Article  CAS  PubMed  Google Scholar 

  7. Liska V, Dostálek M (1999) Are contrast sensitivity functions impaired in insulin dependent diabetics without diabetic retinopathy? Acta Medica (Hradec Kralove) 42(4):133–138

    Article  CAS  Google Scholar 

  8. Duh EJ, Sun JK, Stitt AW (2017) Diabetic retinopathy: current understanding, mechanisms, and treatment strategies. JCI Insight 2(14):e93751

    Article  PubMed Central  Google Scholar 

  9. Antonetti DA, Barber AJ, Bronson SK, Freeman WM, Gardner TW, Jefferson LS, Kester M, Kimball SR, Krady JK, LaNoue KF, Norbury CC, Quinn PG, Sandirasegarane L, Simpson IA (2006) JDRF Diabetic Retinopathy Center Group. Diabetic retinopathy: seeing beyond glucose-induced microvascular disease. Diabetes 55(9):2401–2411

    Article  CAS  PubMed  Google Scholar 

  10. Hernández C, Simó R (2012) Neuroprotection in diabetic retinopathy. Curr Diab Rep 12(4):329–337

    Article  PubMed  CAS  Google Scholar 

  11. Zhang X, Wang N, Barile GR, Bao S, Gillies M (2013) Diabetic retinopathy: neuron protection as a therapeutic target. Int J Biochem Cell Biol 45(7):1525–1529

    Article  CAS  PubMed  Google Scholar 

  12. Hernández C, Dal Monte M, Simó R, Casini G (2016) Neuroprotection as a therapeutic target for diabetic retinopathy. J Diabetes Res 2016:9508541

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Ciulla TA, Amador AG, Zinman B (2003) Diabetic retinopathy and diabetic macular edema: pathophysiology, screening, and novel therapies. Diabetes Care 26(9):2653–2664

    Article  PubMed  Google Scholar 

  14. Chou J, Rollins S, Fawzi AA (2014) Role of endothelial cell and pericyte dysfunction in diabetic retinopathy: review of techniques in rodent models. Adv Exp Med Biol 801:669–675

    Article  PubMed  PubMed Central  Google Scholar 

  15. Cao Y, Feng B, Chen S, Chu Y, Chakrabarti S (2014) Mechanisms of endothelial to mesenchymal transition in the retina in diabetes. Invest Ophthalmol Vis Sci 55(11):7321–7331

    Article  CAS  PubMed  Google Scholar 

  16. Hammes HP (2018) Diabetic retinopathy: hyperglycaemia, oxidative stress and beyond. Diabetologia 61(1):29–38

    Article  PubMed  Google Scholar 

  17. Hammes HP, Feng Y, Pfister F, Brownlee M (2011) Diabetic retinopathy: targeting vasoregression. Diabetes 60(1):9–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hamilton NB, Attwell D, Hall CN (2010) Pericyte-mediated regulation of capillary diameter: a component of neurovascular coupling in health and disease. Front Neuroenergetics 21(2):5

    Google Scholar 

  19. Pfister F, Feng Y, vom Hagen F, Hoffmann S, Molema G, Hillebrands JL, Shani M, Deutsch U, Hammes HP (2008) Pericyte migration: a novel mechanism of pericyte loss in experimental diabetic retinopathy. Diabetes 57(9):2495–2502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Oshitari T, Polewski P, Chadda M, Li AF, Sato T, Roy S (2006) Effect of combined antisense oligonucleotides against high-glucose- and diabetes-induced overexpression of extracellular matrix components and increased vascular permeability. Diabetes 55(1):86–92

    Article  CAS  PubMed  Google Scholar 

  21. Stitt AW, Gardiner TA, Archer DB (1995) Histological and ultrastructural investigation of retinal microaneurysm development in diabetic patients. Br J Ophthalmol 79(4):362–367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wilkinson CP, Ferris FL III, Klein RE, Lee PP, Agardh CD, Davis M, Dills D, Kampik A, Pararajasegaram R, Verdaguer JT (2003) Global Diabetic Retinopathy Project Group. Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales. Ophthalmology 110(9):1677–1682

    Article  CAS  PubMed  Google Scholar 

  23. Pemp B, Garhofer G, Weigert G, Karl K, Resch H, Wolzt M, Schmetterer L (2009) Reduced retinal vessel response to flicker stimulation but not to exogenous nitric oxide in type 1 diabetes. Invest Ophthalmol Vis Sci 50(9):4029–4032

    Article  PubMed  Google Scholar 

  24. Campbell M, Humphries P (2013) The blood-retina barrier. In: Cheng CY (ed) Biology and regulation of blood-tissue barriers. Advances in experimental medicine and biology, vol 763. Springer, New York, pp 70–84. https://doi.org/10.1007/978-1-4614-4711-5_3

    Chapter  Google Scholar 

  25. Drzewoski J, Kasznicki J, Trojanowski Z (2009) The role of “metabolic memory” in the natural history of diabetes mellitus. Pol Arch Med Wewn 119(7–8):493–500

    PubMed  Google Scholar 

  26. Misra A, Bloomgarden Z (2018) Metabolic memory: evolving concepts. J Diabetes 10(3):186–187

    Article  CAS  PubMed  Google Scholar 

  27. Testa R, Bonfigli AR, Prattichizzo F, La Sala L, De Nigris V, Ceriello A (2017) The, “metabolic memory” theory and the early treatment of hyperglycemia in prevention of diabetic complications. Nutrients 9(5):437

    Article  PubMed Central  CAS  Google Scholar 

  28. White NH, Sun W, Cleary PA, Danis RP, Davis MD, Hainsworth DP, Hubbard LD, Lachin JM, Nathan DM (2008) Prolonged effect of intensive therapy on the risk of retinopathy complications in patients with type 1 diabetes mellitus: 10 years after the Diabetes Control and Complications Trial. Arch Ophthalmol 126(12):1707–1715

    Article  PubMed  Google Scholar 

  29. Antonetti DA, Klein R, Gardner TW (2012) Diabetic retinopathy. N Engl J Med 366(13):1227–1239

    Article  CAS  PubMed  Google Scholar 

  30. Simó R, Hernández C (2012) European Consortium for the Early Treatment of Diabetic Retinopathy (EUROCONDOR). Neurodegeneration is an early event in diabetic retinopathy: therapeutic implications. Br J Ophthalmol. 96(10):1285–1290

    Article  PubMed  Google Scholar 

  31. Simó R, Hernández C (2014) European Consortium for the Early Treatment of Diabetic Retinopathy (EUROCONDOR). Neurodegeneration in the diabetic eye: new insights and therapeutic perspectives. Trends Endocrinol Metab. 25(1):23–33

    Article  PubMed  CAS  Google Scholar 

  32. Carrasco E, Hernández C, Miralles A, Huguet P, Farrés J, Simó R (2007) Lower somatostatin expression is an early event in diabetic retinopathy and is associated with retinal neurodegeneration. Diabetes Care 30(11):2902–2908

    Article  CAS  PubMed  Google Scholar 

  33. Garcia-Ramírez M, Hernández C, Villarroel M, Canals F, Alonso MA, Fortuny R, Masmiquel L, Navarro A, García-Arumí J, Simó R (2009) Interphotoreceptor retinoid-binding protein (IRBP) is downregulated at early stages of diabetic retinopathy. Diabetologia 52(12):2633–2641

    Article  PubMed  CAS  Google Scholar 

  34. Solomon SD, Chew E, Duh EJ, Sobrin L, Sun JK, VanderBeek BL, Wykoff CC, Gardner TW (2017) Diabetic retinopathy: a position statement by the American Diabetes Association. Diabetes Care 40(3):412–418

    Article  PubMed  PubMed Central  Google Scholar 

  35. Barber AJ, Lieth E, Khin SA, Antonetti DA, Buchanan AG, Gardner TW (1998) Neural apoptosis in the retina during experimental and human diabetes. Early onset and effect of insulin. J Clin Invest 102(4):783–791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gorman AM (2008) Neuronal cell death in neurodegenerative diseases: recurring themes around protein handling. J Cell Mol Med 12(6A):2263–2280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kadłubowska J, Malaguarnera L, Wąż P, Zorena K (2016) Neurodegeneration and neuroinflammation in diabetic retinopathy: potential approaches to delay neuronal loss. Curr Neuropharmacol 14(8):831–839

    Article  PubMed  PubMed Central  Google Scholar 

  38. Qin Y, Xu G, Wang W (2006) Dendritic abnormalities in retinal ganglion cells of three-month diabetic rats. Curr Eye Res 31(11):967–974

    Article  PubMed  Google Scholar 

  39. Gastinger MJ, Kunselman AR, Conboy EE, Bronson SK, Barber AJ (2008) Dendrite remodeling and other abnormalities in the retinal ganglion cells of Ins2 Akita diabetic mice. Invest Ophthalmol Vis Sci 49(6):2635–2642

    Article  PubMed  Google Scholar 

  40. Gastinger MJ, Barber AJ, Khin SA, McRill CS, Gardner TW, Marshak DW (2001) Abnormal centrifugal axons in streptozotocin-diabetic rat retinas. Invest Ophthalmol Vis Sci 42(11):2679–2685

    CAS  PubMed  Google Scholar 

  41. Gastinger MJ, Singh RS, Barber AJ (2006) Loss of cholinergic and dopaminergic amacrine cells in streptozotocin-diabetic rat and Ins2Akita-diabetic mouse retinas. Invest Ophthalmol Vis Sci 47(7):3143–3150

    Article  PubMed  Google Scholar 

  42. Hammes HP, Federoff HJ, Brownlee M (1995) Nerve growth factor prevents both neuroretinal programmed cell death and capillary pathology in experimental diabetes. Mol Med 1(5):527–534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Park SH, Park JW, Park SJ, Kim KY, Chung JW, Chun MH, Oh SJ (2003) Apoptotic death of photoreceptors in the streptozotocin-induced diabetic rat retina. Diabetologia 46(9):1260–1268

    Article  PubMed  Google Scholar 

  44. Martin PM, Roon P, Van Ells TK, Ganapathy V, Smith SB (2004) Death of retinal neurons in streptozotocin-induced diabetic mice. Invest Ophthalmol Vis Sci 45(9):3330–3336

    Article  PubMed  Google Scholar 

  45. Tonade D, Liu H, Palczewski K, Kern TS (2017) Photoreceptor cells produce inflammatory products that contribute to retinal vascular permeability in a mouse model of diabetes. Diabetologia 60(10):2111–2120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Tonade D, Liu H, Kern TS (2016) Photoreceptor cells produce inflammatory mediators that contribute to endothelial cell death in diabetes. Invest Ophthalmol Vis Sci 57(10):4264–4271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. VanGuilder HD, Brucklacher RM, Patel K, Ellis RW, Freeman WM, Barber AJ (2008) Diabetes downregulates presynaptic proteins and reduces basal synapsin I phosphorylation in rat retina. Eur J Neurosci 28(1):1–11

    Article  PubMed  Google Scholar 

  48. Valastro B, Cossette J, Lavoie N, Gagnon S, Trudeau F, Massicotte G (2002) Up-regulation of glutamate receptors is associated with LTP defects in the early stages of diabetes mellitus. Diabetologia 45(5):642–650

    Article  CAS  PubMed  Google Scholar 

  49. Delyfer MN, Forster V, Neveux N, Picaud S, Léveillard T, Sahel JA (2005) Evidence for glutamate-mediated excitotoxic mechanisms during photoreceptor degeneration in the rd1 mouse retina. Mol Vis 1(11):688–696

    Google Scholar 

  50. Osborne NN, Melena J, Chidlow G, Wood JP (2001) A hypothesis to explain ganglion cell death caused by vascular insults at the optic nerve head: possible implication for the treatment of glaucoma. Br J Ophthalmol 85(10):1252–1259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Cui RZ, Wang L, Qiao SN, Wang YC, Wang X, Yuan F, Weng SJ, Yang XL, Zhong YM (2019) ON-type retinal ganglion cells are preferentially affected in STZ-induced diabetic mice. Invest Ophthalmol Vis Sci 60(5):1644–1656

    Article  CAS  PubMed  Google Scholar 

  52. Pekny M, Wilhelmsson U, Pekna M (2014) The dual role of astrocyte activation and reactive gliosis. Neurosci Lett 17(565):30–38

    Article  CAS  Google Scholar 

  53. Sardar Pasha SPB, Münch R, Schäfer P, Oertel P, Sykes AM, Zhu Y, Karl MO (2017) Retinal cell death dependent reactive proliferative gliosis in the mouse retina. Sci Rep 7(1):9517

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Chang ML, Wu CH, Jiang-Shieh YF, Shieh JY, Wen CY (2007) Reactive changes of retinal astrocytes and Müller glial cells in kainate-induced neuroexcitotoxicity. J Anat 210(1):54–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Carrasco E, Hernández C, de Torres I, Farrés J, Simó R (2008) Lowered cortistatin expression is an early event in the human diabetic retina and is associated with apoptosis and glial activation. Mol Vis 15(14):1496–1502

    Google Scholar 

  56. Mizutani M, Gerhardinger C, Lorenzi M (1998) Müller cell changes in human diabetic retinopathy. Diabetes 47(3):445–449

    Article  CAS  PubMed  Google Scholar 

  57. Meyer-Rüsenberg B, Pavlidis M, Stupp T, Thanos S (2007) Pathological changes in human retinal ganglion cells associated with diabetic and hypertensive retinopathy. Graefes Arch Clin Exp Ophthalmol 245(7):1009–1018

    Article  PubMed  Google Scholar 

  58. Cho NC, Poulsen GL, Ver Hoeve JN, Nork TM (2000) Selective loss of S-cones in diabetic retinopathy. Arch Ophthalmol 118(10):1393–1400

    Article  CAS  PubMed  Google Scholar 

  59. Bharathi Devi SR, Coral K, Gayathree K, Bharathselvi M, Sivasankar S, Biswas J, Rishi P, Natarajan S, Badrinath SS, Angayarkanni N (2019) Case report on two diabetic donor eyes with no retinopathy: clinicopathological and molecular studies. Indian J Ophthalmol 67(10):1762–1765

    Article  PubMed  PubMed Central  Google Scholar 

  60. Di Leo MA, Falsini B, Caputo S, Ghirlanda G, Porciatti V, Greco AV (1990) Spatial frequency-selective losses with pattern electroretinogram in type 1 (insulin-dependent) diabetic patients without retinopathy. Diabetologia 33(12):726–730

    Article  PubMed  Google Scholar 

  61. Falsini B, Porciatti V, Scalia G, Caputo S, Minnella A, Di Leo MA, Ghirlanda G (1989) Steady-state pattern electroretinogram in insulin-dependent diabetics with no or minimal retinopathy. Doc Ophthalmol 73(2):193–200

    Article  CAS  PubMed  Google Scholar 

  62. Caputo S, Di Leo MA, Falsini B, Ghirlanda G, Porciatti V, Minella A, Greco AV (1990) Evidence for early impairment of macular function with pattern ERG in type I diabetic patients. Diabetes Care 13(4):412–418

    Article  CAS  PubMed  Google Scholar 

  63. Di Leo MA, Caputo S, Falsini B, Porciatti V, Greco AV, Ghirlanda G (1994) Presence and further development of retinal dysfunction after 3-year follow up in IDDM patients without angiographically documented vasculopathy. Diabetologia 37(9):911–916

    Article  PubMed  Google Scholar 

  64. Prager TC, Garcia CA, Mincher CA, Mishra J, Chu HH (1990) The pattern electroretinogram in diabetes. Am J Ophthalmol 109(3):279–284

    Article  CAS  PubMed  Google Scholar 

  65. Shirao Y, Kawasaki K (1998) Electrical responses from diabetic retina. Prog Retin Eye Res 17(1):59–76

    Article  CAS  PubMed  Google Scholar 

  66. van der Torren K, van Lith G (1989) Oscillatory potentials in early diabetic retinopathy. Doc Ophthalmol 71(4):375–379

    Article  PubMed  Google Scholar 

  67. Hancock HA, Kraft TW (2004) Oscillatory potential analysis and ERGs of normal and diabetic rats. Invest Ophthalmol Vis Sci 45(3):1002–1008

    Article  PubMed  Google Scholar 

  68. Bearse MA Jr, Han Y, Schneck ME, Adams AJ (2004) Retinal function in normal and diabetic eyes mapped with the slow flash multifocal electroretinogram. Invest Ophthalmol Vis Sci 45(1):296–304

    Article  PubMed  Google Scholar 

  69. Shimada Y, Li Y, Bearse MA Jr, Sutter EE, Fung W (2001) Assessment of early retinal changes in diabetes using a new multifocal ERG protocol. Br J Ophthalmol 85(4):414–419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ng JS, Bearse MA Jr, Schneck ME, Barez S, Adams AJ (2008) Local diabetic retinopathy prediction by multifocal ERG delays over 3 years. Invest Ophthalmol Vis Sci 49(4):1622–1628

    Article  PubMed  Google Scholar 

  71. Han Y, Bearse MA Jr, Schneck ME, Barez S, Jacobsen CH, Adams AJ (2004) Multifocal electroretinogram delays predict sites of subsequent diabetic retinopathy. Invest Ophthalmol Vis Sci 45(3):948–954

    Article  PubMed  Google Scholar 

  72. Han Y, Adams AJ, Bearse MA Jr, Schneck ME (2004) Multifocal electroretinogram and short-wavelength automated perimetry measures in diabetic eyes with little or no retinopathy. Arch Ophthalmol 122(12):1809–1815

    Article  PubMed  Google Scholar 

  73. Riva CE, Logean E, Falsini B (2005) Visually evoked hemodynamical response and assessment of neurovascular coupling in the optic nerve and retina. Prog Retin Eye Res 24(2):183–215

    Article  PubMed  Google Scholar 

  74. Lecleire-Collet A, Audo I, Aout M, Girmens JF, Sofroni R, Erginay A, Le Gargasson JF, Mohand-Saïd S, Meas T, Guillausseau PJ, Vicaut E, Paques M, Massin P (2011) Evaluation of retinal function and flicker light-induced retinal vascular response in normotensive patients with diabetes without retinopathy. Invest Ophthalmol Vis Sci 52(6):2861–2867

    Article  PubMed  Google Scholar 

  75. Tyrberg M, Lindblad U, Melander A, Lövestam-Adrian M, Ponjavic V, Andréasson S (2011) Electrophysiological studies in newly onset type 2 diabetes without visible vascular retinopathy. Doc Ophthalmol 123(3):193–198

    Article  CAS  PubMed  Google Scholar 

  76. Tang Z, Chan MY, Leung WY, Wong HY, Ng CM, Chan VTT, Wong R, Lok J, Szeto S, Chan JCK, Tham CC, Wong TY, Cheung CY (2020) Assessment of retinal neurodegeneration with spectral-domain optical coherence tomography: a systematic review and meta-analysis. Eye (Lond). https://doi.org/10.1038/s41433-020-1020-z

    Article  Google Scholar 

  77. van Dijk HW, Kok PH, Garvin M, Sonka M, Devries JH, Michels RP, van Velthoven ME, Schlingemann RO, Verbraak FD, Abràmoff MD (2009) Selective loss of inner retinal layer thickness in type 1 diabetic patients with minimal diabetic retinopathy. Invest Ophthalmol Vis Sci 50(7):3404–3409

    Article  PubMed  Google Scholar 

  78. van Dijk HW, Verbraak FD, Kok PH, Garvin MK, Sonka M, Lee K, Devries JH, Michels RP, van Velthoven ME, Schlingemann RO, Abràmoff MD (2010) Decreased retinal ganglion cell layer thickness in patients with type 1 diabetes. Invest Ophthalmol Vis Sci 51(7):3660–3665

    Article  PubMed  PubMed Central  Google Scholar 

  79. van Dijk HW, Verbraak FD, Kok PH, Stehouwer M, Garvin MK, Sonka M, DeVries JH, Schlingemann RO, Abràmoff MD (2012) Early neurodegeneration in the retina of type 2 diabetic patients. Invest Ophthalmol Vis Sci 53(6):2715–2719

    Article  PubMed  PubMed Central  Google Scholar 

  80. Demir M, Oba E, Sensoz H, Ozdal E (2014) Retinal nerve fiber layer and ganglion cell complex thickness in patients with type 2 diabetes mellitus. Indian J Ophthalmol 62(6):719–720

    Article  PubMed  PubMed Central  Google Scholar 

  81. Chhablani J, Sharma A, Goud A, Peguda HK, Rao HL, Begum VU, Barteselli G (2015) Neurodegeneration in type 2 diabetes: evidence from spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci 56(11):6333–6338

    Article  PubMed  Google Scholar 

  82. Chen Y, Li J, Yan Y, Shen X (2016) Diabetic macular morphology changes may occur in the early stage of diabetes. BMC Ophthalmol 18(16):12

    Article  Google Scholar 

  83. Santos AR, Ribeiro L, Bandello F, Lattanzio R, Egan C, Frydkjaer-Olsen U, García-Arumí J, Gibson J, Grauslund J, Harding SP, Lang GE, Massin P, Midena E, Scanlon P, Aldington SJ, Simão S, Schwartz C, Ponsati B, Porta M, Costa MÂ, Hernández C, Cunha-Vaz J, Simó R (2017) European Consortium for the Early Treatment of Diabetic Retinopathy (EUROCONDOR). Functional and structural findings of neurodegeneration in early stages of diabetic retinopathy: cross-sectional analyses of baseline data of the EUROCONDOR project. Diabetes 66(9):2503–2510

    Article  CAS  PubMed  Google Scholar 

  84. Nagesh BN, Takkar B, Azad S, Azad R (2016) Optical coherence tomography and multifocal electroretinography in diabetic macular edema: a neurovascular relation with vision. Ophthalmic Surg Lasers Imaging Retina 47(7):626–631

    Article  CAS  PubMed  Google Scholar 

  85. Bringmann A, Wiedemann P (2012) Müller glial cells in retinal disease. Ophthalmologica 227(1):1–19

    Article  PubMed  Google Scholar 

  86. Puro DG (2002) Diabetes-induced dysfunction of retinal Müller cells. Trans Am Ophthalmol Soc 100:339–352

    PubMed  PubMed Central  Google Scholar 

  87. Gerhardinger C, Costa MB, Coulombe MC, Toth I, Hoehn T, Grosu P (2005) Expression of acute-phase response proteins in retinal Müller cells in diabetes. Invest Ophthalmol Vis Sci 46(1):349–357

    Article  PubMed  Google Scholar 

  88. Li Q, Puro DG (2002) Diabetes-induced dysfunction of the glutamate transporter in retinal Müller cells. Invest Ophthalmol Vis Sci 43(9):3109–3116

    PubMed  Google Scholar 

  89. Bergsbaken T, Fink SL, Cookson BT (2009) Pyroptosis: host cell death and inflammation. Nat Rev Microbiol 7(2):99–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Denes A, Lopez-Castejon G, Brough D (2012) Caspase-1: is IL-1 just the tip of the ICEberg? Cell Death Dis 3(7):e338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Zeng HY, Green WR, Tso MO (2008) Microglial activation in human diabetic retinopathy. Arch Ophthalmol 126(2):227–232

    Article  PubMed  Google Scholar 

  92. Zhang W, Liu H, Al-Shabrawey M, Caldwell RW, Caldwell RB (2011) Inflammation and diabetic retinal microvascular complications. J Cardiovasc Dis Res 2(2):96–103

    Article  PubMed  PubMed Central  Google Scholar 

  93. Fumagalli S, Perego C, Pischiutta F, Zanier ER, De Simoni MG (2015) The ischemic environment drives microglia and macrophage function. Front Neurol 8(6):81

    Google Scholar 

  94. Rajamani U, Jialal I (2016) Erratum to “Hyperglycemia induces toll-like receptor-2 and -4 expression and activity in human microvascular retinal endothelial cells: implications for diabetic retinopathy.” J Diabetes Res 2016:8976945

    Article  PubMed  PubMed Central  Google Scholar 

  95. Krady JK, Basu A, Allen CM, Xu Y, LaNoue KF, Gardner TW, Levison SW (2005) Minocycline reduces proinflammatory cytokine expression, microglial activation, and caspase-3 activation in a rodent model of diabetic retinopathy. Diabetes 54(5):1559–1565

    Article  CAS  PubMed  Google Scholar 

  96. Zeng HY, Zhu XA, Zhang C, Yang LP, Wu LM, Tso MO (2005) Identification of sequential events and factors associated with microglial activation, migration, and cytotoxicity in retinal degeneration in rd mice. Invest Ophthalmol Vis Sci 46(8):2992–2999

    Article  PubMed  Google Scholar 

  97. Lai AY, Todd KG (2008) Differential regulation of trophic and proinflammatory microglial effectors is dependent on severity of neuronal injury. Glia 56(3):259–270

    Article  PubMed  Google Scholar 

  98. Zeng XX, Ng YK, Ling EA (2000) Neuronal and microglial response in the retina of streptozotocin-induced diabetic rats. Vis Neurosci 17(3):463–471

    Article  CAS  PubMed  Google Scholar 

  99. McVicar CM, Hamilton R, Colhoun LM, Gardiner TA, Brines M, Cerami A, Stitt AW (2011) Intervention with an erythropoietin-derived peptide protects against neuroglial and vascular degeneration during diabetic retinopathy. Diabetes 60(11):2995–3005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Rungger-Brändle E, Dosso AA, Leuenberger PM (2000) Glial reactivity, an early feature of diabetic retinopathy. Invest Ophthalmol Vis Sci 41(7):1971–1980

    PubMed  Google Scholar 

  101. Chen L, Yang P, Kijlstra A (2002) Distribution, markers, and functions of retinal microglia. Ocul Immunol Inflamm 10(1):27–39

    Article  PubMed  Google Scholar 

  102. Ozdek S, Lonneville YH, Onol M, Yetkin I, Hasanreisoğlu BB (2002) Assessment of nerve fiber layer in diabetic patients with scanning laser polarimetry. Eye (Lond) 16(6):761–765

    Article  CAS  Google Scholar 

  103. Takahashi H, Goto T, Shoji T, Tanito M, Park M, Chihara E (2006) Diabetes-associated retinal nerve fiber damage evaluated with scanning laser polarimetry. Am J Ophthalmol 142(1):88–94

    Article  PubMed  Google Scholar 

  104. Oshitari T, Yamamoto S, Hata N, Roy S (2008) Mitochondria- and caspase-dependent cell death pathway involved in neuronal degeneration in diabetic retinopathy. Br J Ophthalmol 92(4):552–556

    Article  CAS  PubMed  Google Scholar 

  105. Du Y, Veenstra A, Palczewski K, Kern TS (2013) Photoreceptor cells are major contributors to diabetes-induced oxidative stress and local inflammation in the retina. Proc Natl Acad Sci USA 110(41):16586–16591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Kowluru RA, Kowluru A, Veluthakal R, Mohammad G, Syed I, Santos JM, Mishra M (2014) TIAM1-RAC1 signalling axis-mediated activation of NADPH oxidase-2 initiates mitochondrial damage in the development of diabetic retinopathy. Diabetologia 57(5):1047–1056

    Article  CAS  PubMed  Google Scholar 

  107. Santos JM, Tewari S, Lin JY, Kowluru RA (2013) Interrelationship between activation of matrix metalloproteinases and mitochondrial dysfunction in the development of diabetic retinopathy. Biochem Biophys Res Commun 438(4):760–764

    Article  CAS  PubMed  Google Scholar 

  108. Kumar B, Gupta SK, Srinivasan BP, Nag TC, Srivastava S, Saxena R, Jha KA (2013) Hesperetin rescues retinal oxidative stress, neuroinflammation and apoptosis in diabetic rats. Microvasc Res 87:65–74

    Article  CAS  PubMed  Google Scholar 

  109. Nishimura C, Kuriyama K (1985) Alterations in the retinal dopaminergic neuronal system in rats with streptozotocin-induced diabetes. J Neurochem 45(2):448–455

    Article  CAS  PubMed  Google Scholar 

  110. Sánchez-Chávez G, Salceda R (2001) Acetyl- and butyrylcholinesterase in normal and diabetic rat retina. Neurochem Res 26(2):153–159

    Article  PubMed  Google Scholar 

  111. Moore-Dotson JM, Beckman JJ, Mazade RE, Hoon M, Bernstein AS, Romero-Aleshire MJ, Brooks HL, Eggers ED (2016) Early retinal neuronal dysfunction in diabetic mice: reduced light-evoked inhibition increases rod pathway signaling. Invest Ophthalmol Vis Sci 57(3):1418–1430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Lieth E, Barber AJ, Xu B, Dice C, Ratz MJ, Tanase D, Strother JM (1998) Glial reactivity and impaired glutamate metabolism in short-term experimental diabetic retinopathy. Penn State Retina Res Group Diabetes 47(5):815–820

    CAS  Google Scholar 

  113. Lieth E, LaNoue KF, Antonetti DA, Ratz M (2000) Diabetes reduces glutamate oxidation and glutamine synthesis in the retina. The Penn State Retina Research Group. Exp Eye Res 70(6):723–730

    Article  CAS  PubMed  Google Scholar 

  114. Kowluru RA, Engerman RL, Case GL, Kern TS (2001) Retinal glutamate in diabetes and effect of antioxidants. Neurochem Int 38(5):385–390

    Article  CAS  PubMed  Google Scholar 

  115. Lucas DR, Newhouse JP (1957) The toxic effect of sodium L-glutamate on the inner layers of the retina. AMA Arch Ophthalmol 58(2):193–201

    Article  CAS  PubMed  Google Scholar 

  116. Vorwerk CK, Lipton SA, Zurakowski D, Hyman BT, Sabel BA, Dreyer EB (1996) Chronic low-dose glutamate is toxic to retinal ganglion cells. Toxicity blocked by memantine. Invest Ophthalmol Vis Sci 37(8):1618–1624

    CAS  PubMed  Google Scholar 

  117. Ambati J, Chalam KV, Chawla DK, D’Angio CT, Guillet EG, Rose SJ, Vanderlinde RE, Ambati BK (1997) Elevated gamma-aminobutyric acid, glutamate, and vascular endothelial growth factor levels in the vitreous of patients with proliferative diabetic retinopathy. Arch Ophthalmol 115(9):1161–1166

    Article  CAS  PubMed  Google Scholar 

  118. Pulido JE, Pulido JS, Erie JC, Arroyo J, Bertram K, Lu MJ, Shippy SA (2007) A role for excitatory amino acids in diabetic eye disease. Exp Diabetes Res 2007:36150

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Carvajal FJ, Mattison HA, Cerpa W (2016) Role of NMDA receptor-mediated glutamatergic signaling in chronic and acute neuropathologies. Neural Plast 2016:2701526

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Xiao C, He M, Nan Y, Zhang D, Chen B, Guan Y, Pu M (2012) Physiological effects of superoxide dismutase on altered visual function of retinal ganglion cells in db/db mice. PLoS ONE 7(1):e30343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Fukumoto M, Nakaizumi A, Zhang T, Lentz SI, Shibata M, Puro DG (2012) Vulnerability of the retinal microvasculature to oxidative stress: ion channel-dependent mechanisms. Am J Physiol Cell Physiol 302(9):C1413–C1420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Brownlee M (2005) The pathobiology of diabetic complications: a unifying mechanism. Diabetes 54(6):1615–1625

    Article  CAS  PubMed  Google Scholar 

  123. Nita M, Grzybowski A (2016) The role of the reactive oxygen species and oxidative stress in the pathomechanism of the age-related ocular diseases and other pathologies of the anterior and posterior eye segments in adults. Oxid Med Cell Longev 2016:3164734

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Dyer MA, Cepko CL (2000) Control of Müller glial cell proliferation and activation following retinal injury. Nat Neurosci 3(9):873–880

    Article  CAS  PubMed  Google Scholar 

  125. Bringmann A, Pannicke T, Grosche J, Francke M, Wiedemann P, Skatchkov SN, Osborne NN, Reichenbach A (2006) Müller cells in the healthy and diseased retina. Prog Retin Eye Res 25(4):397–424

    Article  CAS  PubMed  Google Scholar 

  126. Harada T, Harada C, Kohsaka S, Wada E, Yoshida K, Ohno S, Mamada H, Tanaka K, Parada LF, Wada K (2002) Microglia-Müller glia cell interactions control neurotrophic factor production during light-induced retinal degeneration. J Neurosci 22(21):9228–9236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Zachary I (2005) Neuroprotective role of vascular endothelial growth factor: signalling mechanisms, biological function, and therapeutic potential. Neurosignals 14(5):207–221

    Article  CAS  PubMed  Google Scholar 

  128. Saint-Geniez M, Maharaj AS, Walshe TE, Tucker BA, Sekiyama E, Kurihara T, Darland DC, Young MJ, D’Amore PA (2008) Endogenous VEGF is required for visual function: evidence for a survival role on müller cells and photoreceptors. PLoS ONE 3(11):e3554

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Li Y, Zhang F, Nagai N, Tang Z, Zhang S, Scotney P, Lennartsson J, Zhu C, Qu Y, Fang C, Hua J, Matsuo O, Fong GH, Ding H, Cao Y, Becker KG, Nash A, Heldin CH, Li X (2008) VEGF-B inhibits apoptosis via VEGFR-1-mediated suppression of the expression of BH3-only protein genes in mice and rats. J Clin Invest 118(3):913–923

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Zhang F, Tang Z, Hou X, Lennartsson J, Li Y, Koch AW, Scotney P, Lee C, Arjunan P, Dong L, Kumar A, Rissanen TT, Wang B, Nagai N, Fons P, Fariss R, Zhang Y, Wawrousek E, Tansey G, Raber J, Fong GH, Ding H, Greenberg DA, Becker KG, Herbert JM, Nash A, Yla-Herttuala S, Cao Y, Watts RJ, Li X (2009) VEGF-B is dispensable for blood vessel growth but critical for their survival, and VEGF-B targeting inhibits pathological angiogenesis. Proc Natl Acad Sci USA 106(15):6152–6157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Jin K, Mao XO, Batteur SP, McEachron E, Leahy A, Greenberg DA (2001) Caspase-3 and the regulation of hypoxic neuronal death by vascular endothelial growth factor. Neuroscience 108(2):351–358

    Article  CAS  PubMed  Google Scholar 

  132. Nishijima K, Ng YS, Zhong L, Bradley J, Schubert W, Jo N, Akita J, Samuelsson SJ, Robinson GS, Adamis AP, Shima DT (2007) Vascular endothelial growth factor-A is a survival factor for retinal neurons and a critical neuroprotectant during the adaptive response to ischemic injury. Am J Pathol 171(1):53–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Bai Y, Ma JX, Guo J, Wang J, Zhu M, Chen Y, Le YZ (2009) Müller cell-derived VEGF is a significant contributor to retinal neovascularization. J Pathol 219(4):446–454

    Article  CAS  PubMed  Google Scholar 

  134. Li CR, Sun SG (2010) VEGF expression and cell apoptosis in NOD mouse retina. Int J Ophthalmol 3(3):224–227

    PubMed  PubMed Central  Google Scholar 

  135. Stadler K (2011) Peroxynitrite-driven mechanisms in diabetes and insulin resistance - the latest advances. Curr Med Chem 18(2):280–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Abdelsaid MA, Pillai BA, Matragoon S, Prakash R, Al-Shabrawey M, El-Remessy AB (2010) Early intervention of tyrosine nitration prevents vaso-obliteration and neovascularization in ischemic retinopathy. J Pharmacol Exp Ther 332(1):125–134

    Article  CAS  PubMed  Google Scholar 

  137. Perrin RM, Konopatskaya O, Qiu Y, Harper S, Bates DO, Churchill AJ (2005) Diabetic retinopathy is associated with a switch in splicing from anti- to pro-angiogenic isoforms of vascular endothelial growth factor. Diabetologia 48(11):2422–2427

    Article  CAS  PubMed  Google Scholar 

  138. Becerra SP, Amaral J (2002) Erythropoietin—an endogenous retinal survival factor. N Engl J Med 347(24):1968–1970

    Article  CAS  PubMed  Google Scholar 

  139. Hernández C, Fonollosa A, García-Ramírez M, Higuera M, Catalán R, Miralles A, García-Arumí J, Simó R (2006) Erythropoietin is expressed in the human retina and it is highly elevated in the vitreous fluid of patients with diabetic macular edema. Diabetes Care 29(9):2028–2033

    Article  PubMed  Google Scholar 

  140. Shen J, Wu Y, Xu JY, Zhang J, Sinclair SH, Yanoff M, Xu G, Li W, Xu GT (2010) ERK- and Akt-dependent neuroprotection by erythropoietin (EPO) against glyoxal-AGEs via modulation of Bcl-xL, Bax, and BAD. Invest Ophthalmol Vis Sci 51(1):35–46

    Article  PubMed  Google Scholar 

  141. Chen J, Connor KM, Aderman CM, Smith LE (2008) Erythropoietin deficiency decreases vascular stability in mice. J Clin Invest 118(2):526–533

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Grant MB, Boulton ME, Ljubimov AV (2008) Erythropoietin: when liability becomes asset in neurovascular repair. J Clin Invest 118(2):467–470

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Gupta N, Mansoor S, Sharma A, Sapkal A, Sheth J, Falatoonzadeh P, Kuppermann B, Kenney M (2013) Diabetic retinopathy and VEGF. Open Ophthalmol J 7:4–10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Kermer P, Klöcker N, Labes M, Bähr M (2000) Insulin-like growth factor-I protects axotomized rat retinal ganglion cells from secondary death via PI3-K-dependent Akt phosphorylation and inhibition of caspase-3 In vivo. J Neurosci 20(2):2–8

    Article  CAS  PubMed  Google Scholar 

  145. Morimoto T, Miyoshi T, Matsuda S, Tano Y, Fujikado T, Fukuda Y (2005) Transcorneal electrical stimulation rescues axotomized retinal ganglion cells by activating endogenous retinal IGF-1 system. Invest Ophthalmol Vis Sci 46(6):2147–2155

    Article  PubMed  Google Scholar 

  146. Barber AJ, Nakamura M, Wolpert EB, Reiter CE, Seigel GM, Antonetti DA, Gardner TW (2001) Insulin rescues retinal neurons from apoptosis by a phosphatidylinositol 3-kinase/Akt-mediated mechanism that reduces the activation of caspase-3. J Biol Chem 276(35):32814–32821

    Article  CAS  PubMed  Google Scholar 

  147. Boulton M, Gregor Z, McLeod D, Charteris D, Jarvis-Evans J, Moriarty P, Khaliq A, Foreman D, Allamby D, Bardsley B (1997) Intravitreal growth factors in proliferative diabetic retinopathy: correlation with neovascular activity and glycaemic management. Br J Ophthalmol 81(3):228–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Meyer-Schwickerath R, Pfeiffer A, Blum WF, Freyberger H, Klein M, Lösche C, Röllmann R, Schatz H (1993) Vitreous levels of the insulin-like growth factors I and II, and the insulin-like growth factor binding proteins 2 and 3, increase in neovascular eye disease. Studies in nondiabetic and diabetic subjects. J Clin Invest. 92(6):2620–2625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Waldbillig RJ, Jones BE, Schoen TJ, Moshayedi P, Heidersbach S, Bitar MS, van Kuijk FJ, de Juan E, Kador P, Chader GJ (1994) Vitreal insulin-like growth factor binding proteins (IGFBPs) are increased in human and animal diabetics. Curr Eye Res 13(7):539–546

    Article  CAS  PubMed  Google Scholar 

  150. Barnstable CJ, Tombran-Tink J (2004) Neuroprotective and antiangiogenic actions of PEDF in the eye: molecular targets and therapeutic potential. Prog Retin Eye Res 23(5):561–577

    Article  CAS  PubMed  Google Scholar 

  151. Tombran-Tink J, Barnstable CJ (2003) PEDF: a multifaceted neurotrophic factor. Nat Rev Neurosci 4(8):628–636

    Article  CAS  PubMed  Google Scholar 

  152. Inagaki Y, Yamagishi S, Okamoto T, Takeuchi M, Amano S (2003) Pigment epithelium-derived factor prevents advanced glycation end products-induced monocyte chemoattractant protein-1 production in microvascular endothelial cells by suppressing intracellular reactive oxygen species generation. Diabetologia 46(2):284–287

    Article  CAS  PubMed  Google Scholar 

  153. Yamagishi S, Inagaki Y, Nakamura K, Abe R, Shimizu T, Yoshimura A, Imaizumi T (2004) Pigment epithelium-derived factor inhibits TNF-alpha-induced interleukin-6 expression in endothelial cells by suppressing NADPH oxidase-mediated reactive oxygen species generation. J Mol Cell Cardiol 37(2):497–506

    Article  CAS  PubMed  Google Scholar 

  154. Becerra SP (2006) Focus on molecules: pigment epithelium-derived factor (PEDF). Exp Eye Res 82(5):739–740

    Article  PubMed  CAS  Google Scholar 

  155. Mohamed R, El-Remessy AB (2015) Imbalance of the Nerve Growth Factor and Its Precursor: Implication in Diabetic Retinopathy. J Clin Exp Ophthalmol 6(5):483

    Article  PubMed  PubMed Central  Google Scholar 

  156. Kummer A, Pulford BE, Ishii DN, Seigel GM (2003) Des(1–3)IGF-1 treatment normalizes type 1 IGF receptor and phospho-Akt (Thr 308) immunoreactivity in predegenerative retina of diabetic rats. Int J Exp Diabesity Res 4(1):45–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Casaccia-Bonnefil P, Carter BD, Dobrowsky RT, Chao MV (1996) Death of oligodendrocytes mediated by the interaction of nerve growth factor with its receptor p75. Nature 383(6602):716–719

    Article  CAS  PubMed  Google Scholar 

  158. Hempstead BL (2009) Commentary: Regulating proNGF action: multiple targets for therapeutic intervention. Neurotox Res 16(3):255–260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Johnson JE, Barde YA, Schwab M, Thoenen H (1986) Brain-derived neurotrophic factor supports the survival of cultured rat retinal ganglion cells. J Neurosci 6(10):3031–3038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Seki M, Tanaka T, Nawa H, Usui T, Fukuchi T, Ikeda K, Abe H, Takei N (2004) Involvement of brain-derived neurotrophic factor in early retinal neuropathy of streptozotocin-induced diabetes in rats: therapeutic potential of brain-derived neurotrophic factor for dopaminergic amacrine cells. Diabetes 53(9):2412–2419

    Article  CAS  PubMed  Google Scholar 

  161. Simó R, Lecube A, Sararols L, García-Arumí J, Segura RM, Casamitjana R, Hernández C (2002) Deficit of somatostatin-like immunoreactivity in the vitreous fluid of diabetic patients: possible role in the development of proliferative diabetic retinopathy. Diabetes Care 25(12):2282–2286

    Article  PubMed  Google Scholar 

  162. Simó R, Carrasco E, Fonollosa A, García-Arumí J, Casamitjana R, Hernández C (2007) Deficit of somatostatin in the vitreous fluid of patients with diabetic macular edema. Diabetes Care 30(3):725–727

    Article  PubMed  CAS  Google Scholar 

  163. Gonzalez-Fernandez F, Ghosh D (2008) Focus on molecules: interphotoreceptor retinoid-binding protein (IRBP). Exp Eye Res 86(2):169–170

    Article  CAS  PubMed  Google Scholar 

  164. Liou GI, Fei Y, Peachey NS, Matragoon S, Wei S, Blaner WS, Wang Y, Liu C, Gottesman ME, Ripps H (1998) Early onset photoreceptor abnormalities induced by targeted disruption of the interphotoreceptor retinoid-binding protein gene. J Neurosci 18(12):4511–4520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Ola MS, Alhomida AS, Ferrario CM, Ahmad S (2017) Role of tissue renin-angiotensin system and the chymase/angiotensin-(1–12) axis in the pathogenesis of diabetic retinopathy. Curr Med Chem 24(28):3104–3114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Downie LE, Pianta MJ, Vingrys AJ, Wilkinson-Berka JL, Fletcher EL (2008) AT1 receptor inhibition prevents astrocyte degeneration and restores vascular growth in oxygen-induced retinopathy. Glia 56(10):1076–1090

    Article  PubMed  Google Scholar 

  167. Kurihara T, Ozawa Y, Nagai N, Shinoda K, Noda K, Imamura Y, Tsubota K, Okano H, Oike Y, Ishida S (2008) Angiotensin II type 1 receptor signaling contributes to synaptophysin degradation and neuronal dysfunction in the diabetic retina. Diabetes 57(8):2191–2198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Silva KC, Rosales MA, Biswas SK, Lopes de Faria JB, Lopes de Faria JM (2009) Diabetic retinal neurodegeneration is associated with mitochondrial oxidative stress and is improved by an angiotensin receptor blocker in a model combining hypertension and diabetes. Diabetes 58(6):1382–1390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Yoshida Y, Yamagishi S, Matsui T, Jinnouchi Y, Fukami K, Imaizumi T, Yamakawa R (2009) Protective role of pigment epithelium-derived factor (PEDF) in early phase of experimental diabetic retinopathy. Diabetes Metab Res Rev. 25(7):678–686

    Article  CAS  PubMed  Google Scholar 

  170. Liu Y, Tao L, Fu X, Zhao Y, Xu X (2013) BDNF protects retinal neurons from hyperglycemia through the TrkB/ERK/MAPK pathway. Mol Med Rep 7(6):1773–1778

    Article  PubMed  CAS  Google Scholar 

  171. Hernández C, Bogdanov P, Corraliza L, García-Ramírez M, Solà-Adell C, Arranz JA, Arroba AI, Valverde AM, Simó R (2016) Topical administration of GLP-1 receptor agonists prevents retinal neurodegeneration in experimental diabetes. Diabetes 65(1):172–187

    Article  PubMed  Google Scholar 

  172. Kusari J, Zhou S, Padillo E, Clarke KG, Gil DW (2007) Effect of memantine on neuroretinal function and retinal vascular changes of streptozotocin-induced diabetic rats. Invest Ophthalmol Vis Sci 48(11):5152–5159

    Article  PubMed  Google Scholar 

  173. Ghadiri Soufi F, Arbabi-Aval E, Rezaei Kanavi M, Ahmadieh H (2015) Anti-inflammatory properties of resveratrol in the retinas of type 2 diabetic rats. Clin Exp Pharmacol Physiol 42(1):63–68

    Article  CAS  PubMed  Google Scholar 

  174. Soufi FG, Vardyani M, Sheervalilou R, Mohammadi M, Somi MH (2012) Long-term treatment with resveratrol attenuates oxidative stress pro-inflammatory mediators and apoptosis in streptozotocin-nicotinamide-induced diabetic rats. Gen Physiol Biophys 31(4):431–438

    Article  CAS  PubMed  Google Scholar 

  175. Kumar B, Gupta SK, Nag TC, Srivastava S, Saxena R, Jha KA, Srinivasan BP (2014) Retinal neuroprotective effects of quercetin in streptozotocin-induced diabetic rats. Exp Eye Res 125:193–202

    Article  CAS  PubMed  Google Scholar 

  176. Kurihara T, Ozawa Y, Nagai N, Inoue M, Oike Y, Okano H, Tsubota K, Ishida S (2007) Neuroprotective effects of angiotensin II type 1 (AT1R) receptor blocker telmisartan on early diabetic retina. Investig Ophthalmol Vis Sci 48(13):1389

    Google Scholar 

  177. Final Report Summary—EUROCONDOR (European Consortium for the Early Treatment of Diabetic Retinopathy). https://cordis.europa.eu/project/id/278040/reporting. Accessed 24 Nov 2020

  178. Shen X, Zhong Y, Xie B, Cheng Y, Jiao Q (2010) Pigment epithelium derived factor as an anti-inflammatory factor against decrease of glutamine synthetase expression in retinal Müller cells under high glucose conditions. Graefes Arch Clin Exp Ophthalmol 248(8):1127–1136

    Article  CAS  PubMed  Google Scholar 

  179. Zhu XF, Zou HD (2012) PEDF in diabetic retinopathy: a protective effect of oxidative stress. J Biomed Biotechnol 2012:580687

    Article  PubMed  PubMed Central  Google Scholar 

  180. Cayouette M, Smith SB, Becerra SP, Gravel C (1999) Pigment epithelium-derived factor delays the death of photoreceptors in mouse models of inherited retinal degenerations. Neurobiol Dis 6(6):523–532

    Article  CAS  PubMed  Google Scholar 

  181. Cao W, Tombran-Tink J, Elias R, Sezate S, Mrazek D, McGinnis JF (2001) In vivo protection of photoreceptors from light damage by pigment epithelium-derived factor. Invest Ophthalmol Vis Sci 42(7):1646–1652

    CAS  PubMed  Google Scholar 

  182. Cao W, Tombran-Tink J, Chen W, Mrazek D, Elias R, McGinnis JF (1999) Pigment epithelium-derived factor protects cultured retinal neurons against hydrogen peroxide-induced cell death. J Neurosci Res 57(6):789–800

    Article  CAS  PubMed  Google Scholar 

  183. Reiter CE, Wu X, Sandirasegarane L, Nakamura M, Gilbert KA, Singh RS, Fort PE, Antonetti DA, Gardner TW (2006) Diabetes reduces basal retinal insulin receptor signaling: reversal with systemic and local insulin. Diabetes 55(4):1148–1156

    Article  CAS  PubMed  Google Scholar 

  184. Bai Y, Xu J, Brahimi F, Zhuo Y, Sarunic MV, Saragovi HU (2010) An agonistic TrkB mAb causes sustained TrkB activation, delays RGC death, and protects the retinal structure in optic nerve axotomy and in glaucoma. Invest Ophthalmol Vis Sci 51(9):4722–4731

    Article  PubMed  Google Scholar 

  185. Colafrancesco V, Coassin M, Rossi S, Aloe L (2011) Effect of eye NGF administration on two animal models of retinal ganglion cells degeneration. Ann Ist Super Sanita 47(3):284–289

    CAS  PubMed  Google Scholar 

  186. Mayor-Torroglosa S, De la Villa P, Rodríguez ME, López-Herrera MP, Avilés-Trigueros M, García-Avilés A, de Imperial JM, Villegas-Pérez MP, Vidal-Sanz M (2005) Ischemia results 3 months later in altered ERG, degeneration of inner layers, and deafferented tectum: neuroprotection with brimonidine. Invest Ophthalmol Vis Sci 46(10):3825–3835

    Article  PubMed  Google Scholar 

  187. Sampedro J, Bogdanov P, Ramos H, Solà-Adell C, Turch M, Valeri M, Simó-Servat O, Lagunas C, Simó R, Hernández C (2019) New insights into the mechanisms of action of topical administration of GLP-1 in an experimental model of diabetic retinopathy. J Clin Med 8(3):339

    Article  CAS  PubMed Central  Google Scholar 

  188. Sena DF, Lindsley K (2013) Neuroprotection for treatment of glaucoma in adults. Cochrane Database Syst Rev 2(2):CD006539

    Google Scholar 

  189. Soufi FG, Mohammad-Nejad D, Ahmadieh H (2012) Resveratrol improves diabetic retinopathy possibly through oxidative stress—nuclear factor κB—apoptosis pathway. Pharmacol Rep 64(6):1505–1514

    Article  CAS  PubMed  Google Scholar 

  190. Yar AS, Menevse S, Dogan I, Alp E, Ergin V, Cumaoglu A, Aricioglu A, Ekmekci A, Menevse A (2012) Investigation of ocular neovascularization-related genes and oxidative stress in diabetic rat eye tissues after resveratrol treatment. J Med Food 15(4):391–398

    Article  CAS  PubMed  Google Scholar 

  191. Silva KC, Rosales MA, Hamassaki DE, Saito KC, Faria AM, Ribeiro PA, Faria JB, Faria JM (2013) Green tea is neuroprotective in diabetic retinopathy. Invest Ophthalmol Vis Sci 54(2):1325–1336

    Article  CAS  PubMed  Google Scholar 

  192. Elgayar SA, Eltony SA, Sayed AA, Abdel-Rouf MM (2015) Genistein treatment confers protection against gliopathy and vasculopathy of the diabetic retina in rats. Ultrastruct Pathol 39(6):385–394

    Article  PubMed  Google Scholar 

  193. Ola MS, Ahmed MM, Abuohashish HM, Al-Rejaie SS, Alhomida AS (2013) Telmisartan ameliorates neurotrophic support and oxidative stress in the retina of streptozotocin-induced diabetic rats. Neurochem Res 38(8):1572–1579

    Article  CAS  PubMed  Google Scholar 

  194. Foureaux G, Nogueira BS, Coutinho DC, Raizada MK, Nogueira JC, Ferreira AJ (2015) Activation of endogenous angiotensin converting enzyme 2 prevents early injuries induced by hyperglycemia in rat retina. Braz J Med Biol Res 48(12):1109–1114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Sohn EH, van Dijk HW, Jiao C, Kok PH, Jeong W, Demirkaya N, Garmager A, Wit F, Kucukevcilioglu M, van Velthoven ME, DeVries JH, Mullins RF, Kuehn MH, Schlingemann RO, Sonka M, Verbraak FD, Abràmoff MD (2016) Retinal neurodegeneration may precede microvascular changes characteristic of diabetic retinopathy in diabetes mellitus. Proc Natl Acad Sci USA 113(19):E2655–E2664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Roy MS, Bungay P, Collier B, Bonner R (1989) A new method in the analysis of vitreous fluorophotometry. Results in early diabetic retinopathy. Ophtalmologie 3(3):214–216

    CAS  PubMed  Google Scholar 

  197. Schalnus R, Ohrloff C, Jungmann E, Maass K, Rinke S, Wagner A (1993) Permeability of the blood-retinal barrier and the blood-aqueous barrier in type I diabetes without diabetic retinopathy: simultaneous evaluation with fluorophotometry. Ger J Ophthalmol 2(4–5):202–206

    CAS  PubMed  Google Scholar 

  198. Bordat B, Guirgis IR, Manderscheid JC (1990) Fluorophotometry of the vitreous body in diabetics without retinopathy or with minimal retinopathy. J Fr Ophtalmol 13(6–7):343–347

    CAS  PubMed  Google Scholar 

  199. Hombrebueno JR, Chen M, Penalva RG, Xu H (2014) Loss of synaptic connectivity, particularly in second order neurons is a key feature of diabetic retinal neuropathy in the Ins2Akita mouse. PLoS ONE 9(5):e97970

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  200. Cahoon JM, Rai RR, Carroll LS, Uehara H, Zhang X, O’Neil CL, Medina RJ, Das SK, Muddana SK, Olson PR, Nielson S, Walker K, Flood MM, Messenger WB, Archer BJ, Barabas P, Krizaj D, Gibson CC, Li DY, Koh GY, Gao G, Stitt AW, Ambati BK (2015) Intravitreal AAV2.COMP-Ang1 prevents neurovascular degeneration in a murine model of diabetic retinopathy. Diabetes 64(12):4247–4259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Kern TS, Barber AJ (2008) Retinal ganglion cells in diabetes. J Physiol 586(18):4401–4408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Lopes de Faria JM, Russ H, Costa VP (2002) Retinal nerve fibre layer loss in patients with type 1 diabetes mellitus without retinopathy. Br J Ophthalmol. 86(7):725–728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Phipps JA, Fletcher EL, Vingrys AJ (2004) Paired-flash identification of rod and cone dysfunction in the diabetic rat. Invest Ophthalmol Vis Sci 45(12):4592–4600

    Article  PubMed  Google Scholar 

  204. Han Y, Schneck ME, Bearse MA Jr, Barez S, Jacobsen CH, Jewell NP, Adams AJ (2004) Formulation and evaluation of a predictive model to identify the sites of future diabetic retinopathy. Invest Ophthalmol Vis Sci 45(11):4106–4112

    Article  PubMed  Google Scholar 

  205. Harrison WW, Bearse MA Jr, Ng JS, Jewell NP, Barez S, Burger D, Schneck ME, Adams AJ (2011) Multifocal electroretinograms predict onset of diabetic retinopathy in adult patients with diabetes. Invest Ophthalmol Vis Sci 52(2):772–777

    Article  PubMed  PubMed Central  Google Scholar 

  206. Bresnick GH, Palta M (1987) Predicting progression to severe proliferative diabetic retinopathy. Arch Ophthalmol 105(6):810–814

    Article  CAS  PubMed  Google Scholar 

  207. Simó R, Hernández C, Porta M, Bandello F, Grauslund J, Harding SP, Aldington SJ, Egan C, Frydkjaer-Olsen U, García-Arumí J, Gibson J, Lang GE, Lattanzio R, Massin P, Midena E, Ponsati B, Ribeiro L, Scanlon P, Lobo C, Costa MÂ, Cunha-Vaz J (2019) European Consortium for the Early Treatment of Diabetic Retinopathy (EUROCONDOR). Effects of topically administered neuroprotective drugs in early stages of diabetic retinopathy: results of the EUROCONDOR clinical trial. Diabetes 68(2):457–463

    Article  PubMed  CAS  Google Scholar 

  208. Tan CS, Chew MC, Lim LW, Sadda SR (2016) Advances in retinal imaging for diabetic retinopathy and diabetic macular edema. Indian J Ophthalmol 64(1):76–83

    Article  PubMed  PubMed Central  Google Scholar 

  209. Ivanisević M, Stanić R (1990) Importance of fluorescein angiography in the early detection and therapy of diabetic retinopathy. Ophthalmologica 201(1):9–13

    Article  PubMed  Google Scholar 

  210. Zhang B, Chou Y, Zhao X, Yang J, Chen Y (2020) Early detection of microvascular impairments with optical coherence tomography angiography in diabetic patients without clinical retinopathy: a meta-analysis. Am J Ophthalmol S0002–9394(20):30530–30534

    Google Scholar 

  211. Lombardo M, Serrao S, Devaney N, Parravano M, Lombardo G (2012) Adaptive optics technology for high-resolution retinal imaging. Sensors (Basel) 13(1):334–366

    Article  Google Scholar 

  212. Shin YI, Nam KY, Lee SE, Lee MW, Lim HB, Jo YJ, Kim JY (2019) Peripapillary microvasculature in patients with diabetes mellitus: an optical coherence tomography angiography study. Sci Rep 9(1):15814

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  213. Huang J, Zheng B, Lu Y, Gu X, Dai H, Chen T (2020) Quantification of microvascular density of the optic nerve head in diabetic retinopathy using optical coherence tomographic angiography. J Ophthalmol 29(2020):5014035

    Google Scholar 

  214. Hafner J, Zadrazil M, Grisold A, Ricken G, Krenn M, Kitzmantl D, Pollreisz A, Gleiss A, Schmidt-Erfurth U (2020) Retinal and corneal neurodegeneration and their association with systemic signs of peripheral neuropathy in type 2 diabetes. Am J Ophthalmol 209:197–205

    Article  PubMed  Google Scholar 

  215. Takkar B, Takkar A (2020) Comment on: Retinal and corneal neurodegeneration and its association to systemic signs of peripheral neuropathy in type 2 diabetes. Am J Ophthalmol 216:286–287

    Article  PubMed  Google Scholar 

  216. Picconi F, Mataluni G, Ziccardi L, Parravano M, Di Renzo A, Ylli D, Pasqualetti P, Studer V, Chioma L, Marfia GA, Frontoni S (2018) Association between early neuroretinal dysfunction and peripheral motor unit loss in patients with type 1 diabetes mellitus. J Diabetes Res 4(2018):9763507

    Google Scholar 

Download references

Funding

The authors have not received grant support or research funding and do not have any proprietary interests in the materials described in the article; Dr BT gets general research support from the Hyderabad Eye Research Foundation and India Alliance CRTP grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brijesh Takkar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soni, D., Sagar, P. & Takkar, B. Diabetic retinal neurodegeneration as a form of diabetic retinopathy. Int Ophthalmol 41, 3223–3248 (2021). https://doi.org/10.1007/s10792-021-01864-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10792-021-01864-4

Keywords

Navigation