Skip to main content

Advertisement

Log in

Metabolomics analysis in pterygium tissue

  • Original Paper
  • Published:
International Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

The aim of the study was to measure amino acid levels with the metabolomics analysis in pterygium tissue and normal conjunctiva tissue.

Materials and methods

In this prospective, randomized, clinical study, a comparison of the amino acid profile of pterygium tissue and normal conjunctiva tissue taken during autograft pterygium surgery was made. After homogenization of the tissues, amino acid levels were measured with chromatography–mass spectrometry (LC–MS/MS) in the biochemistry laboratory. Statistical analysis was made using the Wilcoxon signed-rank test.

Results

Evaluation of pterygium and normal conjunctiva tissues of 29 patients, comprising 16 females and 13 males with a mean age of 54.75 ± 11.25 years (range 21–78 years) was made. While a dramatic increase was observed in all the amino acid levels in the pterygium tissue compared to the normal conjunctiva (p > 0.05), only the increases in arginine, methionine, glycine and tyrosine amino acids were determined to be statistically significant (p < 0.01), (p = 0.028), (p = 0.038), (p = 0.046).

Conclusion

Pterygium is known to be degenerative inflammatory fibrovascular tissue. When the aetiology is examined in depth, several metabolic processes are seen to have an effect. Further studies of the amino acid profile with more extensive patient series could confirm the data obtained in the current study and contribute to the clarification of the pathogenesis of pterygium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Di Girolamo N, Chui J, Coroneo MT, Wakefield D (2004) Pathogenesis of pterygia: role of cytokines, growth factors, and matrix metalloproteinases. Prog Retin Eye Res 23:195–228. https://doi.org/10.1016/j.preteyeres.2004.02.002

    Article  CAS  PubMed  Google Scholar 

  2. Detorakis ET, Spandidos DA (2009) Pathogenetic mechanisms and treatment options for ophthalmic pterygium: trends and perspectives. Int J Mol Med 23:439–447. https://doi.org/10.3892/ijmm_00000149

    Article  CAS  PubMed  Google Scholar 

  3. Anguria P, Kitinya J, Ntuli S, Carmichael T (2014) The role of heredity in pterygium development. Int J Ophthalmol 7:563. https://doi.org/10.3980/j.issn.2222-3959.2014.03.31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Coroneo M (1993) Pterygium as an early indicator of ultraviolet insolation: a hypothesis. Br J Ophthalmol 77:734. https://doi.org/10.1136/bjo.77.11.734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Van Setten G, Aspiotis M, Blalock TD, Grotendorst G, Schultz G (2003) Connective tissue growth factor in pterygium: simultaneous presence with vascular endothelial growth factor–possible contributing factor to conjunctival scarring. Graefe’s Arch Clin Exp Ophthalmol 241:135–139. https://doi.org/10.1007/s00417-002-0589-1

    Article  CAS  Google Scholar 

  6. Golu T, Mogoanta L, Streba C, Pirici D, Malaescu D, Mateescu GO, Mutiu G (2011) Pterygium: histological and immunohistochemical aspects. Rom J Morphol Embryol 52:153–158

    CAS  PubMed  Google Scholar 

  7. Liu T, Liu Y, Xie L, He X, Bai J (2013) Progress in the pathogenesis of pterygium. Curr Eye Res 38:1191–1197. https://doi.org/10.3109/02713683.2013.823212

    Article  CAS  PubMed  Google Scholar 

  8. Di Girolamo N (2012) Association of human papilloma virus with pterygia and ocular-surface squamous neoplasia. Eye 26:202–211. https://doi.org/10.1038/eye.2011.312

    Article  PubMed  Google Scholar 

  9. Ang LP, Chua JL, Tan DT (2007) Current concepts and techniques in pterygium treatment. Curr Opin Ophthalmol 18:308–313. https://doi.org/10.1097/ICU.0b013e3281a7ecbb

    Article  PubMed  Google Scholar 

  10. Wu C-W, Peng M-L, Yeh K-T, Tsai Y-Y, Chiang C-C, Cheng Y-W (2016) Inactivation of p53 in pterygium influence miR-200a expression resulting in ZEB1/ZEB2 up-regulation and EMT processing. Exp Eye Res 146:206–211. https://doi.org/10.1016/j.exer.2016.03.012

    Article  CAS  PubMed  Google Scholar 

  11. Ozturk BT, Yildirim MS, Zamani A, Bozkurt B (2017) K-ras oncogene mutation in pterygium. Eye 31:491–498. https://doi.org/10.1038/eye.2016.254

    Article  CAS  PubMed  Google Scholar 

  12. Lai H-S, Lee J-C, Lee P-H, Wang S-T, Chen W-J (2005) Plasma free amino acid profile in cancer patients. In: Seminars in cancer biology, pp 267–276. https://doi.org/10.1016/j.semcancer.2005.04.003

    Article  CAS  Google Scholar 

  13. Rahimi N, Razi F, Nasli-Esfahani E, Qorbani M, Shirzad N, Larijani B (2017) Amino acid profiling in the gestational diabetes mellitus. J Diabetes Metab Disord 16:13. https://doi.org/10.1186/s40200-016-0283-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bi X, Henry C (2017) Plasma-free amino acid profiles are predictors of cancer and diabetes development. Nutr Diabetes 7:249. https://doi.org/10.1038/nutd.2016.55

    Article  CAS  Google Scholar 

  15. Hu Z, Zhu Z, Cao Y, Wang L, Sun X, Dong J, Fang Z, Fang Y, Xu X, Gao P (2016) Rapid and sensitive differentiating ischemic and hemorrhagic strokes by dried blood spot based direct injection mass spectrometry metabolomics analysis. J Clin Lab Anal 30:823–830. https://doi.org/10.1002/jcla.21943

    Article  CAS  PubMed  Google Scholar 

  16. la Marca G, Malvagia S, Pasquini E, Innocenti M, Fernandez MR, Donati MA, Zammarchi E (2008) The inclusion of succinylacetone as marker for tyrosinemia type I in expanded newborn screening programs. Rapid Commun Mass Spectrom 22:812–818. https://doi.org/10.1002/rcm.3428

    Article  CAS  PubMed  Google Scholar 

  17. Tan DT-H, Liu Y-P, Sun L (2000) Flow cytometry measurements of DNA content in primary and recurrent pterygia. Invest Ophthalmol Vis Sci 41:1684–1686

    CAS  PubMed  Google Scholar 

  18. Kase S, Osaki M, Jin X-H, Ohgami K, Yoshida K, Saito W, Takahashi S, Nakanishi K, Ito H, Ohno S (2007) Increased expression of erythropoietin receptor in human pterygial tissues. Int J Mol Med 20:699–702. https://doi.org/10.3892/ijmm.20.5.699

    Article  PubMed  Google Scholar 

  19. Karukonda S, Thompson HW, Beuerman RW, Lam D, Wilson R, Chew SJ, Steinemann TL (1995) Cell cycle kinetics in pterygium at three latitudes. Br J Ophthalmol 79:313–317. https://doi.org/10.1136/bjo.79.4.313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Perra MT, Maxia C, Corbu A, Minerba L, Demurtas P, Colombari R, Murtas D, Bravo S, Piras F, Sirigu P (2006) Oxidative stress in pterygium: relationship between p53 and 8-hydroxydeoxyguanosine. Mol Vis 12:1136–1142. http://www.molvis.org/molvis/v12/a128/

  21. Roux C, Riganti C, Borgogno SF, Curto R, Curcio C, Catanzaro V, Digilio G, Padovan S, Puccinelli MP, Isabello M (2017) Endogenous glutamine decrease is associated with pancreatic cancer progression. Oncotarget 8:95361. https://doi.org/10.18632/oncotarget.20545

    Article  PubMed  PubMed Central  Google Scholar 

  22. Burrill JS, Long EK, Reilly B, Deng Y, Armitage IM, Scherer PE, Bernlohr DA (2015) Inflammation and ER stress regulate branched-chain amino acid uptake and metabolism in adipocytes. Mol Endocrinol 29:411–420. https://doi.org/10.1210/me.2014-1275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Miuma S, Ichikawa T, Arima K, Takeshita S, Muraoka T, Matsuzaki T, Ootani M, Shibata H, Akiyama M, Ozawa E (2012) Branched-chain amino acid deficiency stabilizes insulin-induced vascular endothelial growth factor mRNA in hepatocellular carcinoma cells. J Cell Biochem 113:3113–3121. https://doi.org/10.1002/jcb.24188

    Article  CAS  PubMed  Google Scholar 

  24. Vissers YL, Dejong CH, Luiking YC, Fearon KC, von Meyenfeldt MF, Deutz NE (2005) Plasma arginine concentrations are reduced in cancer patients: evidence for arginine deficiency? Am J Clin Nutr 81:1142–1146. https://doi.org/10.1093/ajcn/81.5.1142

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the research fund of Harran University (HUBAK). Project Number: 17244.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayhan Saglik.

Ethics declarations

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers’ bureaus; membership, employment, consultancies, stock ownership or other equity interest; and expert testimony or patent-licensing arrangements) or non-financial interest (such as personal or professional relationships, affiliations, knowledge or beliefs) in the subject matter or materials discussed in this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saglik, A., Koyuncu, I., Gonel, A. et al. Metabolomics analysis in pterygium tissue. Int Ophthalmol 39, 2325–2333 (2019). https://doi.org/10.1007/s10792-018-01069-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10792-018-01069-2

Keywords

Navigation