Skip to main content

Advertisement

Log in

Optic nerve head slope-based quantitative parameters for identifying open-angle glaucoma on SPECTRALIS OCT images

  • Original Paper
  • Published:
International Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To investigate monitoring slope-based features of the optic nerve head (ONH) cup as open-angle glaucoma (OAG) occurs.

Method

A dataset of 46 retrospective OCT cases was acquired from the SPECTRALIS Heidelberg Engineering OCT device. A set of five parameters, which are based on the ONH cup-incline, are measured on the OAG and normal subjects in the dataset. Then, three new ONH cup-shape indices were deduced. The ONH cup-incline parameters and ONH cup-shape indices are analyzed to estimate their clinical value.

Results

The statistical difference between measurements on normal and glaucoma eyes was remarkably significant for all of the analyzed parameters and indices (p value < 0.001).

Conclusions

The geometric shape of the ONH cup can be transferred to numerical parameters and indices. The proposed ONH cup-incline parameters and ONH cup-shape indices have shown suggestive clinical value to identify the development of OAG. As OAG appears, the top ONH cup-incline parameters decrease while the bottom ONH cup-incline parameters increase. The ONH cup-shape indices suggest capability to discriminate OAG from normal eyes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kingman S (2004) Glaucoma is second leading cause of blindness globally. Bull World Health Organ 82:887–888

    PubMed  PubMed Central  Google Scholar 

  2. Cook C, Foster P (2012) Epidemiology of glaucoma: what is new? Can J Opthalmol 47:223–226

    Article  Google Scholar 

  3. Quigley HA, Broman AT (2006) The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol 90:262–267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Thomas R, Parikh RS (2006) How to assess a patient for glaucoma. Community Eye Health 19:36–37

    PubMed  PubMed Central  Google Scholar 

  5. Gelikonov VM, Gelikonov GV, Dolin LS et al (2003) Optical coherence tomography: physical principles and applications. Laser Phys 13:692–702

    Google Scholar 

  6. Addepalli UK, Ganesh BJ, Chandrasekhar G et al (2013) Agreement of glaucoma specialists and experienced optometrists in gonioscopy and optic disc evaluation. J Optom 6:212–218

    Article  Google Scholar 

  7. Bussel II, Wollstein G, Schuman JS (2014) OCT for glaucoma diagnosis, screening, and detection of glaucoma progression. Br J Ophthalmol 98(Suppl. 2):ii15–ii19

    Article  PubMed  Google Scholar 

  8. Firat PG, Doganay S, Demirel EE, Colak C (2013) Comparison of ganglion cell and retinal nerve fiber layer thickness in primary open-angle glaucoma and normal tension glaucoma with spectral-domain OCT. Graefes Arch Clin Exp Ophthalmol 251:831–838

    Article  CAS  PubMed  Google Scholar 

  9. Ramdas WD, Van Koolwijk LME, Lemij HG et al (2011) Common genetic variants associated with open-angle glaucoma. Hum Mol Genet 20:2464–2471

    Article  CAS  PubMed  Google Scholar 

  10. Narooie-Nejad M, Paylakhi SH, Shojaee S et al (2009) Loss of function mutations in the gene encoding latent transforming growth factor beta binding protein 2, LTBP2, cause primary congenital glaucoma. Hum Mol Genet 18:3969–3977

    Article  CAS  PubMed  Google Scholar 

  11. Skarie JM, Link BA (2008) The primary open-angle glaucoma gene WDR36 functions in ribosomal RNA processing and interacts with the p53 stress–response pathway. Hum Mol Genet 17:2474–2485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Vithana EN, Aung T, Khor CC et al (2011) Collagen-related genes influence the glaucoma risk factor, central corneal thickness. Hum Mol Genet 20:649–658

    Article  CAS  PubMed  Google Scholar 

  13. Yaqoob Z, Wu J, Yang C (2005) Spectral domain optical coherence tomography: a better OCT imaging strategy. Mol Imaging 39:S6–S13

    Google Scholar 

  14. Dubois A, Grieve K, Moneron G et al (2004) Ultrahigh-resolution full-field optical coherence tomography. Appl Opt 43:2874–2883

    Article  PubMed  Google Scholar 

  15. Wang J, Dainty C, Podoleanua A (2008) Multiple delay lines full-field optical coherence tomography. 1st Canterbury workshop on optical coherence tomography and adaptive optics, Canterbury. doi:10.1117/12.822154

  16. Subhash HM (2011) Full-field and single-shot full-field optical coherence tomography: a novel technique for biomedical imaging applications. Adv Opt Technol. doi:10.1155/2012/435408

    Google Scholar 

  17. Savini G, Carbonelli M, Parisi V, Barboni P (2011) Repeatability of optic nerve head parameters measured by spectral-domain OCT in healthy eyes. Ophthalmic Surg Lasers Imaging 42:209–215

    Article  PubMed  Google Scholar 

  18. Aref AA, Budenz DL (2010) Spectral Domain Optical Coherence Tomography in the Diagnosis and Management of Glaucoma. Ophthalmic Surgery, Lasers & Imaging 41(Suppl.):S15–S27

    Article  Google Scholar 

  19. Savini G, Barboni P, Parisi V, Carbonelli M (2012) The influence of axial length on retinal nerve fiber layer thickness and optic-disc size measurements by spectral-domain OCT. Br J Ophthalmol 96:57–61

    Article  PubMed  Google Scholar 

  20. Kim NR, Lee ES, Seong GJ, Choi EH, Hong S, Kim CY (2010) Spectral-domain optical coherence tomography for detection of localized retinal nerve fiber layer defects in patients with open-angle glaucoma. Arch Opthalmol 128:1121–1128

    Article  Google Scholar 

  21. Gupta PK, Asrani S, Freedman SF, El-Dairi M, Bhatti MT (2011) Differentiating glaucomatous from non-glaucomatous optic nerve cupping by optical coherence tomography. Open Neurol J 5:1–7

    PubMed  PubMed Central  Google Scholar 

  22. Kaw SM, Martinez JM, Tumbocon JA, Atienza N (2012) Correlation of average RNFL thickness using the STRATUS OCT with the perimetric staging of glaucoma. Philipp Acad Ophthalmol 37:19–23

    Google Scholar 

  23. Monteiro M, Hokazono K, Cunha L, Oyamada M (2013) Correlation between multifocal pattern electroretinography and Fourier-domain OCT in eyes with temporal hemianopia from chiasmal compression. Graefes Arch Clin Exp Ophthalmol 251:903–915

    Article  PubMed  Google Scholar 

  24. Nukada M, Hangai M, Mori S et al (2011) Detection of localized retinal nerve fiber layer defects in glaucoma using enhanced spectral-domain optical coherence tomography. Ophthalmology 118:1038–1048

    Article  PubMed  Google Scholar 

  25. Dong J, Chihara E (2001) Slope analysis of the optic disc in eyes with ocular hypertension and early normal tension glaucoma by confocal scanning laser ophthalmoscope. Br J Ophthalmol 85:56–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cullinane AB, Waldock A, Diamond JP, Sparrow JM (2002) Optic disc cup slope and visual field indices in normal, ocular hypertensive and early glaucomatous eyes. Br J Ophthalmol 86:555–559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Töteberg-Harms M, Sturm V, Knecht PB, Funk J, Menke MN (2012) Repeatability of nerve fiber layer thickness measurements in patients with glaucoma and without glaucoma using spectral-domain and time-domain OCT. Graefes Arch Clin Exp Ophthalmol 250:279–287

    Article  PubMed  Google Scholar 

  28. Khanal S, Davey PG, Racette Thapa M (2015) Intra eye retinal nerve fiber layer and macular thickness asymmetry measurements for the discrimination of primary open-angle glaucoma and normal tension glaucoma. J Optomol. doi:10.1016/j.optom.2015.10.002

    Google Scholar 

  29. Babu G, Devi S (2009) Glaucoma diagnosis of morphological processing in optical coherence tomography. In: International Conference on Computer Engineering and Applications IPCSIT, vol 2, pp 343–347

  30. Huang ML, Chen HY, Huang JJ (2007) Glaucoma detection using adaptive neuro-fuzzy inference system. Expert Syst Appl 32:458–468

    Article  Google Scholar 

  31. Bock R, Meier J, Nyúl LG, Hornegger J, Michelson G (2010) Glaucoma risk index: automated glaucoma detection from color fundus images. Med Image Anal 14:471–481

    Article  PubMed  Google Scholar 

  32. Yousefi S, Goldbaum MH, Balasubramanian M et al (2013) Glaucoma progression detection using structural retinal nerve fiber layer measurements and functional visual field points. IEEE Trans Biomed Eng 00:1–12

    Google Scholar 

  33. Koprowski R, Rzendkowski M, Wróbel Z (2014) Automatic method of analysis of OCT images in assessing the severity degree of glaucoma and the visual field loss. BioMed Eng. doi:10.1186/1475-925X-13-16

    Google Scholar 

  34. Bland M (2000) Comparing the means of small samples. An introduction to medical statistics, 3rd edn. Oxford University Press, Oxford, pp 156–183

    Google Scholar 

  35. Girkin CA, Sample PA, Liebmann JM et al (2010) African Descent and Glaucoma Evaluation Study (ADAGES), Ancestry differences in optic disc, retinal nerve fiber layer, and macular structure in healthy subjects. Arch Ophthalmol 128:541–550

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Authors would like to present their thanks and gratefulness to the medical staff in the ophthalmology clinic at the Specialty hospital in Amman, Jordan, for their kindness and cooperation to collect the research data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bassam O. Al-Naami.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The subjects in this experiment are retrospective studies.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Hinnawi, AR.M., Al-Naami, B.O. & Al-Latayfeh, M.M. Optic nerve head slope-based quantitative parameters for identifying open-angle glaucoma on SPECTRALIS OCT images. Int Ophthalmol 37, 979–988 (2017). https://doi.org/10.1007/s10792-016-0362-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10792-016-0362-9

Keywords

Navigation