Skip to main content

Advertisement

Log in

Correlation of the measurements of optical coherence tomography and diffuse tension imaging of optic pathways in amblyopia

  • Original Paper
  • Published:
International Ophthalmology Aims and scope Submit manuscript

Abstract

The aim of this study was to investigate whether a correlation exists between optical coherence tomography (OCT) of retina and diffusion tensor imaging (DTI) of the optic pathway measurements. All subjects underwent OCT measurements of optic nerve head, retinal nerve fiber layer, and macula. Fractional anisotropy (FA) and apparent diffusion coefficient (ADC) values of optic pathways were analyzed using DTI. Prechiasmatic FA values were significantly decreased in unilateral amblyopic group in both affected and sound fellow eyes (p = 0.019 and 0.013), but not in bilateral amblyopic group (p = 0.221) when compared with the control group. ADC values were significantly greater in sound eye in unilateral amblyopic group in prechiasmatic and postchiasmatic regions (p = 0.001 and 0.049). ADC values were also significantly greater in bilateral amblyopic group in postchiasmatic region (p = 0.037). There were no significant differences between the affected eye and sound eye side DTI measurements. There was no significant correlation between prechiasmatic DTI and OCT measurements in affected and sound eyes of unilateral amblyopia group. DTI results demonstrated that there is a functional underdevelopment of the anterior and posterior visual pathways in both affected and sound eye of unilateral amblyopic patients. Significantly reduced FA values in prechiasmatic region where OCT values of retina were normal can be explained by possible micro-structural changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Hess RF (2001) Amblyopia: site unseen. Clin Exp Optom 84:321–336

    Article  PubMed  Google Scholar 

  2. Barnes GR, Hess RF, Dumoulin SO, Achtman RL, Pike GB (2001) The cortical deficit in humans with strabismic amblyopia. J Physiol (15) 533(Pt 1):281–297

    Article  CAS  Google Scholar 

  3. Anderson SJ, Swettenham JB (2006) Neuroimaging in human amblyopia. Strabismus 14:21–35

    Article  PubMed  Google Scholar 

  4. Goodyear BG, Nicolle DA, Humphrey GK, Menon RS (2000) BOLD fMRI response of early visual areas to perceived contrast in human amblyopia. J Neurophysiol 84:1907–1913

    CAS  PubMed  Google Scholar 

  5. Beaulieu C (2002) The basis of anisotropic water diffusion in the nervous system—a technical review. NMR Biomed 15:435–455

    Article  PubMed  Google Scholar 

  6. Roebroeck A, Galuske R, Formisano E, Chiry O, Bratzke H, Ronen I, Kim D, Goebel R (2008) High-resolution diffusion tensor imaging and tractography of the human optic chiasm at 9.4 T. NeuroImage 39:157–168

    Article  PubMed  Google Scholar 

  7. Sakuma H, Nomura Y, Takeda K, Tagami T, Nakagawa T, Tamagawa Y et al (1991) Adults and neonatal human brain: diffusional anisotropy and myelination with diffusion-weighted MR imaging. Radiology 180:229–233

    Article  CAS  PubMed  Google Scholar 

  8. Morriss MC, Zimmerman RA, Bilaniuk LT, Hunter JV, Haselgrove JC (1999) Changes in brain water diffusion during childhood. Neuroradiology 41:929–934

    Article  CAS  PubMed  Google Scholar 

  9. Filippi CG, Lin DD, Tsiouris AJ, Watts R, Packard AM, Heier LA et al (2003) Diffusion Tensor MR imaging in children with developmental delay: preliminary findings. Radiology 229:44–50

    Article  PubMed  Google Scholar 

  10. Shimony JS, Burton H, Epstein AA, Mclaren DG, Sun SW, Synder AZ (2006) Diffusion tensor imaging reveals white matter reorganization in early blind humans Cereb. Cortex 16:1653–1661

    Article  CAS  Google Scholar 

  11. Anik I, Anik Y, Koc K, Ceylan S, Genc H, Altintas O et al (2011) Evaluation of early visual recovery in pituitary macroadenomas after endoscopic endonasal transsphenoidal surgery: quantitative assessment with diffusion tensor imaging. Acta Neurochir 153(4):831–842

    Article  PubMed  Google Scholar 

  12. Xie S, Gong GL, Xiao JX, Ye JT, Liu HH, Gan XL et al (2007) Underdevelopment of optic radiation in children with amblyopia: a tractography study. Am J Ophthalmol 143(4):642–646

    Article  PubMed  Google Scholar 

  13. Yen MY, Cheng CY, Wang AG (2004) Retinal nerve fiber thickness in unilateral amblyopia. Ophthalmol Vis Sci 45:2224–2230

    Article  Google Scholar 

  14. Altintas O, Yuksel N, Ozkan B, Caglar Y (2005) Thickness of the retinal nerve fiber layer, macular thickness and macular volume in patients with strabismic amblyopia. J Pediatr Ophthalmol Strabismus 42:216–221

    PubMed  Google Scholar 

  15. Li Q, Jiang Q, Guo M et al (2013) Grey and white matter changes in children with monocular amblyopia: voxel-based morphometry and diffusion tensor imaging study. Br J Ophthalmol 97:524–529

    Article  PubMed  Google Scholar 

  16. Duan Y, Norcia AM, Yeatman JD, Mezer A (2015) The structural properties of major white matter tracts in strabismic amblyopia. Invest Ophthalmol Vis Sci 56(9):5152–5160

    Article  PubMed  PubMed Central  Google Scholar 

  17. Beaulieu C (2002) The basis of anisotropic water diffusion in the nervous system—a technical review. NMR Biomed 15:435–455

    Article  PubMed  Google Scholar 

  18. Moon WJ, Provenzale JM, Sarıkaya B, Ihn YK, Morlese J, Chen S et al (2011) Diffusion-tensor imaging assessment of white matter maturation in childhood and adolescence. AJR Am J Roentgenol 197(3):704–712

    Article  PubMed  PubMed Central  Google Scholar 

  19. Lee SK, Kim DI, Kim J, Kim DJ, Kim HD, Kim DS et al (2005) Diffusion-Tensor MR imaging and fiber tractography: a new method of describing aberrant fiber connections in developmental CNS anomalies. RadioGraphics 25:53–68

    Article  PubMed  Google Scholar 

  20. Provenzale JM, Liang L, De Long D, White LE (2007) Diffusion tensor imaging. Assessment of brain white matter maturation during the first postnatal year. AJR 189:476–486

    Article  PubMed  Google Scholar 

  21. Stieltjes B, Kaufmann WE, van Zijl PC (2001) Diffusion tensor imaging and axonal tracking in the human brainstem. Neuroimage 14:723–735

    Article  CAS  PubMed  Google Scholar 

  22. Sbardella E, Tona F, Petsas N, Pantano P (2013) DTI Measurements in Multiple Sclerosis: Evaluation of Brain Damage and Clinical Implications. MultScler Int. doi: 10.1155/2013/671730

  23. Crawford MLJ, Von Noorden GK (1979) Concomitant strabismus and cortical eye dominance in young rhesus monkeys. Trans Ophthalmol Soc UK 99:369–374

    CAS  PubMed  Google Scholar 

  24. Maehara G, Thompson B, Mansouri B, Farivar R, Hess RF (2011) The perceptual consequences of interocular suppression in amblyopia. Invest Ophthalmol Vis Sci 52:9011–9017

    Article  PubMed  Google Scholar 

  25. Mower GD, Christen WG, Burchfiel JL, Duffy FH (1984) Microiontophoretic bicuculline restores binocular responses to visual cortical neurons in strabismic cats. Brain Res 309:168–172

    Article  CAS  PubMed  Google Scholar 

  26. Hess RF, Thompson B, Gole G, Mullen KT (2009) Deficient responses from the lateral geniculate nucleus in humans with amblyopia. Eur J Neurosci 29:1064–1070

    Article  PubMed  PubMed Central  Google Scholar 

  27. Qi S, Mu YF, Cui LB et al (2016) Association of optic radiation integrity with cortical thickness in children with anisometropic amblyopia. Neurosci Bull 32(1):51–60

    Article  PubMed  Google Scholar 

  28. Farivar R, Thompson B, Mansouri B, Hess RF (2011) Interocular suppression in strabismic amblyopia results in an attenuated and delayed hemodynamic response function in early visual cortex. J Vis. doi:10.1167/11.14.16

  29. Tugcu B, Araz-Ersan B, Kilic M, Erdogan ET, Yigit U, Karamursel S (2013) The morpho-functional evaluation of retina in amblyopia. Curr Eye Res 38(7):802–809

    Article  PubMed  Google Scholar 

  30. Leguire LE, Rogers GL, Bremer DL (1990) Amblyopia: the normal eye is not normal. J Pediatr Ophthalmol Strabismus 27:32–38

    CAS  PubMed  Google Scholar 

  31. Giaschi DE, Regan D, Kraft SP, Hong XH (1992) Defective processing of motion-defined form in the fellow eye of patients with unilateral amblyopia. Invest Ophthalmol Vis Sci 33:2483–2489

    CAS  PubMed  Google Scholar 

  32. Chatzistefanou KI, Theodossiadis GP, Damanakis AG, Ladas ID, Moschos MN, Chimonidou E (2005) Contrast sensitivity in amblyopia: the fellow eye of untreated and successfully treated amblyopes. JAAPOS 9:468–474

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruken Cinik.

Additional information

Ozgul Altintas, Sevtap Gumustas, and Ruken Cinik have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Altıntaş, Ö., Gümüştaş, S., Cinik, R. et al. Correlation of the measurements of optical coherence tomography and diffuse tension imaging of optic pathways in amblyopia. Int Ophthalmol 37, 85–93 (2017). https://doi.org/10.1007/s10792-016-0229-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10792-016-0229-0

Keywords

Navigation